ADVANCED TELEPROCESSING SYSTEMS
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

SEMI-ANNUAL TECHNICAL REPORT

o
(o]
N March 31, 1984
F
0
P
Q
Principal Investigator: Leonard Kleinrock
Computer Science Department Lo . s : ;
[T School of Engineering and Applied Science DT, ”
eI University of California 0 Y ‘
§- Los Angeles 1
L. ‘
3

tribution is unltmired, £ Op 85 11 14 138 j

T e T e
PP S AP R I Y|

ADVANCED TELEPROCESSING SYSTEMS —
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY R

SEMI-ANNUAL TECHNICAL REPORT

March 31, 1984

Accession Fop
NTIS GRasr
DTIC Tap

Unannounced
Justificaty,

O

Jiitribution/
Principal Investigator: Leonard Kleinrock P —
P & .flﬁ“ability Codes
[Avail and/op
Special

Computer Science Department
School of Engineering and Applied Science T’:;\T! C
ECTE

University of California
Los Angeles

&£H =t = g
By TR lase Cow ¥
N . i .
}‘,i: “”.

Q> NOvV 181985

E

- e g TTe e
,tf-,.' AT T
v P R
v £
11 *
A

v, 'l'l"'/r,l
v o
"‘n" ‘r.-"n '
Aol

o
270"
.'..' .
i

-
.
.

b
]

| This document bas been approved iy .:{?.ﬁ:
for public release and scle; ita ' '-.: Y
distribution I8 wnlimived, e 3 e , }-.:;_;:..-_:
A SR

.'l
¢

T

.........

e 'b
e RN A R T R o, -rﬁ-r

...........................

UNIVERSITY OF CALIFORNIA, LOS ANGELES
SEMI-ANNUAL TECHNICAL REPORTS
Sponsored by the

Defense Advanced Research Projects Agency

Contract Numbers

DAHC-15-C-0368 DARPA Order No. 2496

MDA 903-77-C-0272
MDA 903-82-C-0064

COMPUTER NETWORK RESEARCH

DATES DDC ACCESSION NUMBER

August 1969 to

February 1970 AD 705 149
August 1970 AD 711342
June 1971 AD 727 989
December 1971 AD 739 705
June 1972 AD 746 509
December 1972 AD 756 708
June 1973 AD 769 706
December 1973 AD A004167
June 1974 AD A008422
December 1974 AD A016823
June 1975 AD A020671
December 1975 AD A025914
June 1976 AD A034171
(Final) N
N
ADVANCED TELEPROCESSING SYSTEMS .
June 1976 to N
December 1976 AD A039018 i
June 1977 AD A047496 o
June 1978 AD A077404 .
September 1979 AD A081938 i
March 1980 AD A088839 B
September 1981 AD A133525 o
(Final) N
September 1982 to be assigned R
March 1983 to be assigned v
September 1983 AD 137944 ~
March 1984 to be assigned -]
=3

s,

. E:l
*a‘aa i 17s 02

ADVANCED TELEPROCESSING SYSTEMS
Semi-Annual Technical Report
March 31, 1984

Contract Number: MDA 903-82-C-0064
DARPA Order Number: 2496
Contract Period: October 1, 1981 to June 30, 1986
Report Period: October 1, 1983 to March 31, 1984

Principal Investigator: Leonard Kleinrock
Co-Principal Investigator: Mario Gerla
(213) 825-2543

Computer Science Department
School of Engineering and Applied Science
University of California, Los Angeles

Sponsored by
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Pro-
jects Agency or the United States Government.

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

REPORT DOCUMENTATION PAGE BEF o O BN RN
. REPO NUM 2. GOVY ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
l;p - fllol 260
4. TITLE (and Subtitle) S. TYPE OF REPOART & PERIOD COVERED
Advanced Teleprocessing Systems ?g?i;ggngaﬁ/giigzlcal
SEmi-Annual Technical Report
6. PERFORMING ORG. REFPORT NUMBER
7. AUTHOR(®) T. CONTRACY OR GRANT NUMBTN®) |
Leonard Kleinrock MDA 903-82-C~-0064
9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT, PROJECT, TASK
R) . . AREA & WORK UNIT NUMBERS
School of Engineering & Applied Science
University of California, Los Angeles DARPA Order No. 2496
Los Angeles, Ca, 90024
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency March 31, 1984
1400 Wilson Blvd 13. NUMBER OF PAGES

ArlingtonE VA 22209 190
. MONITORING AGENCY NAME & AODRESS(!! dilferent from Controlling Ollice) 15. SECURITY CLASS. (of thie report)

[18, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the sbeirect antered In Bleck 20, If different frem Repori)

180. SUPPLEMENTARY NOTES
Parallel processing, concurrency, speedup factor, graph
model of computation, multi-processing.

19. KEY WORDS (Centinue e revecae oide If nocossary and identifty by block aumber)

20. AIS_TIACT (Cu!“m an reverge side H necessary and dentify by dlock number) .
This Semi-Annual Technical Report covers research carried out

by the Advanced Teleprocessing Systems Group at UCLA under DARPA
Contract No. MDA 903-82-C-0064 covering the period from
October 1, 1983 to March 31, 1984,

oD ‘:g:‘;, 1473 zoimion oF 1 nov 8318 ORsOLETE

Unclassified
$/N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dela Bntered)

..

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(20)

This contract has three primary designated research areas: distributed communi-
cations access, distributed processing, and distributed control and algorithms.

This report contains the abstracts of the publications which summarize our
research results in those areas during this semi-annual period, followed by the
main body of the report which consists of the Ph.D. dissertation by Kenneth
Kung, “Concurrency in Parallel Processing Systems”, conducted under the super-
vision of Professor Leonard Kleinrock (Principal Investigator for this contract).
A model for parallel processing is introduced using the graph model of computa-
tion. Four key classification parameters are considered: the input (either a fixed
number of jobs, k, or a random arrival process with rate A jobs/scc); the structure
of the graph (either a fixed graph structure, G, or a random graph, G*); the ser-
vice time per task (either a fixed service time, x, or a random service time, x°);
and the number of processors (either a finite number, P, or an infinite number
P=oo).

For the cases (k, G, ¢°, P=«) and (A,G,x’, P=<), we set up a Markov chain for
the number of concurrent tasks which solve for the equilibrium probabilities.
From this we also find the mean system response time and the speedup factor.
Using simpler methods, we place upper and lower bounds on the speedup. For the
case (k, G, ., P < =) we also bound the speedup for the special case of diamond-

shaped process graphs.

For random graphs with fixed service time (k, G°, %, P=0), we find that, as N, the
number of tasks per job, approaches infinity, the speedup simply apgroaches 2!

For random service times, we find that the speedup, S, is bounded by 35 5 <2

We also present results for the oPtimal number of processes, P, for diamond-
shaped graphs for the case (k, G°, . P < =) where the objective is to maximize
"power" defined as throughput divided by response time.

The issue of communication overhead is also addressed in this work and we
study the effect of this overhead on the gains that are achieved from parallel pro-
cessing.

.
>
A
'.-
"y
{1
$/N 0102- LF- 014- 6601 Unclassified ::;
N
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered ‘;
»
-

ADVANCED TELEPROCESSING SYSTEMS

Defense Advanced Research Projects Agency
Semi - Annual Technical Report

March 31, 1984

INTRODUCTION

This Semi - Annual Technical Report covers research carried out by the Advanced Teleprocessing
Systems Group at UCLA under DARPA Contract No. MDA 903-82-C-0064 covering the period
from October 1, 1983 to March 31, 1984. Under this contract we have three designated tasks as
follows:

TASK I. DISTRIBUTED COMMUNICATIONS ACCESS

The general problem of sharing a multi-access broadcast distributed sys-
tems among a set of competing users will be studied. General issues in-
volving exhaustive communications, start-up problems and refined
models to manifest some more realistic phenomena in these systems will
be studied. Applications to packet radio systems and large survivable
networks involving the study of tandem networks, multi-hop networks,
one-way communication links, correct reception of more than one simul-
taneous transmission and mobility will be included. Further applications
will include the study of very high bandwidth channels and/or very long
propagation delay systems, multiple token systems and compound
hierarchical network structures.

TASK II. DISTRIBUTED PROCESSING

The interplay between distributed communications in a broadcast en-
vironment and processing of distributed data will be studied. For exam-
ple, the effect of merging sorted lists in a broadcast environment, as well
as finding properties of elements in these lists, will be studied. Con-
currency in multiprocessor systems will be studied in order to investigate
performance in terms of response time and speedup factors for various
graph models of computation. Connection architectures for multiproces-
sor systems will be investigated as well. One application here is the
structure of the processing and communication architecture for super-
computers.

TASK 1Il. DISTRIBUTED CONTROL AND ALGORITHMS

Routing, flow control and survivability in large packet radio networks as

well as in public data networks will be studied as control algorithms in a

distributed environment. Measures of performance, including A
throughput, response time, blocking, power, fairness, and robustness will
be applied to these systems. Distributed algorithms for finding shortest
paths, connectivity, loops, etc. will be studied. The effect of node and
link failures, limited amounts of memory at each node and restricted
channel capacity for communications will be investigated. The effect of
network failures and delays on distributed data base management systems
will also be studied.

A major contribution of our research during this reporting period is contained in Reference 4 list-
ed below, namely "Concurrency in Parallel Processing Systems”, by Kenneth Kung. this disserta- -
tion was supervised by Professor Leonard Kleinrock (Principal Investigator for this research).

A model for parallel processing is introduced using the graph model of computation. Four key
classification parameters are considered: the input (either a fixed number of jobs, k, or a random
arrival process with rate A jobs/scc), the structure of the graph (either a fixed graph structure, G, or
a random graph, G"); the service time per task (either a fixed service time, , or a random service .
time, %"); and the number of processors (either a finite number, P, or an infinite number P= o). ~

For the cases (k, G, ", P=) and (A, G, %", P= =), we set up a Markov chain for the number of
concurrent tasks which solve for the equilibrium probabilities. From this we also find the mean -

system response time and the speedup factor. Using simpler methods, we place upper and lower .
bounds on the speedup. For the case (k, G, %, P < «) we also bound the speedup for the special >
case of diamond-shaped process graphs. .

P
For random graphs with fixed service time (k, G*, %, P= =), we find that, as N, the number of "

tasks per job, approaches infinity, the speedup simply approaches 2! For random service times,
we find that the speedup, S, is bounded by % <§ <2

We also present results for the optimal number of processes, P, for diamond- shaped graphs for 3
the case (k, G*, %, P < =) where the objective is to maximize "power" defined as throughput divid- 3
ed by response time,

The issue of communication overhead is also addressed in this work and we study the effect of
[this overhead on the gains that are achieved from parallel processing. The entire dissertation is :
: reproduced as the main body of this report. The following list of research publications summar- -
izes the results of the semi-annual period and the abstract of each paper is given along with the i
reference itself.

..

..
..

RESEARCH PUBLICATIONS

1. Kleinrock, L. and G. Akavia, "On a Self Adjusting Capability of Random Access
Networks", IEEE Transactions on Communications, January 1984, Vol. Com-32, No.
1, pp. 40-47.

We consider a distributed communication network with many terminals
which are distributed in space and wish to communicate with each other
using a common radio channel. Choosing the transmission range in such
a network involves the following tradeoff: a long range enables mes-
sages to reach their destinations in a few hops, but increases the amount
of traffic competing for the channel at every point.

We give a simple model for the per-hop delay in random access net-
works, analyze this tradeoff, and give the optimal transmission range.
When choosing this optimal range, as a function of specified traffic and
delay parameters, networks demonstrate an important self-adjusting capa-
bility. This capability to adjust to traffic makes heavily loaded networks
far better than centralized systems (in which all messages must reach one
common destination).

Dividing a terminal population into power groups can improve any ran-
dom access system, especially when the traffic is split between groups in
an appropriate way, which we demonstrate. But since networks are hurt
by destructive interference less than centralized systems, it is harder to
improve them. Using power groups can significantly improve centralized
systems, but will lead to a smaller relative improvement in networks.
Decomposing the system into a hierarchy of ALOHA levels, with only a
small population contending at the top level, can improve centralized sys-
tems but does not improve networks.

2, Takagi, H. and L. Kleinrock, "Optimal Transmission Ranges for Randomly Distri-
buted Packet Radio Terminals", /EEE Transactions on Communications, Vol. Com-32,
No. 3, March 1984, pp. 246-257.

In multihop packet radio networks with randomly distributed terminals,
the optimal transmission radii to maximize the expected progress of
packets in desired directions are determined with a variety of transmis-
sion protocols and network configurations. It is shown that the FM cap-
ture phenomenon with slotted ALOHA greatly improves the expected
progress over the system without capture due to the more limited area of
possibly interfering terminals around the receiver. The (mini)slotted non-
persistent carrier-sense-multiple-access (CSMA) only slightly outper-
forms ALOHA, unlike the single-hop case (where a large improvement is
available), because of a large area of "hidden" terminals and the long
vulnerable period generated by them. As an example of an inhomogene-
ous terminal distribution, the effect of a gap in an otherwise randomly
distributed terminal population on the expected progress of packets cross-
ing the gap is considered. In this case, the disadvantage of using a large
transmission radius is demonstrated.

3. Takagi, H. and L. Kieinrock, "Diffusion Process Approximation For The Queueing }
Delay In Contention Packet Broadcasting Systems", 2nd Int’l Symposium on the Per- -
Sformance of Computer Communications Systems, IBM, Zurich, March 21-23, 1984,

The average packet delay (including queueing and randomized re-
(transmission delays) for a finite number of random access users of a
channe]l with infinite buffers is studied. For a class of contention-type -
N memoryless protocols (including ALOHA and nonpersistent CSMA), a :
diffusion process approximation for the joint queue length distribution is

:‘.j formulated, and on the basis of its stationary solution, two approximate
- mean delay formulas are proposed and examined against simulation.
4, Kung, Kenneth Ching-Yu, "Concurrency in Parallel Processing Systems", Ph.D.
Dissertation, Computer Science Department, University of California, Los Angeles,
March 1984.

RIS
PRy

P

o -
e
N '
- -
. « 9
. W
. K
-
- - [
M ~-
- N
E-. N
." .
-

e UNIVERSITY OF CALIFORNIA -

N -
Los Angeles -
]

o . Concurrency in Parallel Processing Systems

A dissertation submitted in partial satisfaction of the
requirement for the degree Doctor of Philosophy
inC ter Sci
- in Computer Science

by -

Kenneth Ching-Yu Kung "

1984

NI

a“e”
.

[
»

]
13

Table of Contents

R o

page

List of Figures

..

List of Tables

...

Acknowledgments

...

Vita and Publications

...

Abstract of the DiSsertationcccccccceiieeriiiinincenneieeiesinrisassneesaesesisstssereaessasssosssensmneaesens
1 Introduction
1.1 Distributed Processing in a Network of Processors

1.2 Existing Examples
1.3 Summary of Results
1.3.1 Fixed Process Graphs

1.3.2 Random Process Graphs
1.3.3 Communication Overhead

..
..
...

...
...
..

...

2 Background and Related Work
2.1 Brief History
2.2 Graph Model of Behavior
2.3 Related Work

2.3.1 Petri Nets
2.3.2 Automatic Detection of Parallelism
2.3.3 Multiprocessor Hardware Organization
2.3.4 Theory of Branching Processes
2.3.5 Bounds on the Average System Time
2.3.6 Task Scheduling
2.4 Discussion

..
..
..
...
..
...
..
..

..

..

3 A General Model
3.1 Resources
3.2 Process Graph
3.3 Taxonomy
3.4 Notation
3.5 Cases Studied

...
...
...

...
..

..

4 Fixed Process Graphs
4.1 Introduction

..

...

4.2 Fixed Number of Jobs (k, G, z*, P = o0)
4.2.1 The Exact Average System Time

4.2.1.1 Converting the Process Graph into a Markovian State Transition
4.2.1.2 The Average System Time
4.2.1.3 The Concurrency Measure

4.2.2 Bounds on the Average System Time (k, G, 2°, P = o0)
4.2.2.1 Blocking Time of Predecessor Tasks

...

...

..........................

..

KfR&EK BEYIER

w W
O

42
47

4.2.2.2 Bounds for Structured Process Graphs
4.2.2.3 Bounds for Non-structured Process Graphs
4.2.2.4 Tightness of the Bounds (m = 1)

4.3 Arrivals of Jobs (\, G, z’, P =00)

4.4 Stochastic Petri Nets (£, G, z°, P < o)

4.5 Task Assignment (&, G, 2z, P<oo)

4.6 Discussion

5 Random Process Graphs
5.1 Introduction
5.2 Some Properties of Random Process Graphs
5.2.1 Total Number of Arrangements with N Tasks
5.2.2 A Method of Constructing All Arrangements of Process Graphs with N
Tasks
5.2.3 Distribution of the Number of Arrangements
5.2.4 Chernoff Bound on the Tail Probability
5.2.5 Generation of Random Process Graphs
5.3 Fixed Task Service Time (£, G’, z, P = o0)
5.4 Random Task Service Times (k, G°, z°, P = o0)
5.4.1 Bounds on the Average System Time without the Number of Precedence
Relationships
5.4.1.1 Upper Bound
5.4.1.2 Lower Bound
5.4.1.3 Discussion
5.4.2 Upper Bound with a Fixed Number of Precedence Relationships
5.4.2.1 Minimally Counnected Process Graph
5.4.2.2 An Upper Bound
5.4.3 Comparison of The Two Upper Bounds
5.5 Trade Off between Average System Time and Utilization of Processors for a

Diamond-shaped Process Graph (k, G°, z, P < o0)

5.6 Bounds on the Average System Time with a Limited Number of Processors
(k, G*, 2, P < o0)

5.7 Discussion

6 Process-communication Graphs
6.1 Communication Tasks (k, G, z°, P < o)
6.2 Limited Number of Processors Per Job (k, G, 2, P < o)
6.3 One Communication Bus (¢, G, z°, P < o0)
6.4 Discussion

References

-3
[~

I

RERREZ RZB2I

«

List of Figures

page
Figure 2 Shuffle/Exchange NetwWorkccccoviineniiinsicuiiineesinmncssesrecninssessassnnessosenes 15
Figure 3.1 An example of 3 process graphcccooverierrimiirinnenceiecneencressareerssessennies 23
Figure 3.2 Matrix Inversion Process Graphccccorvvviircvricrminicvircctmiiicvincnenecraccsones 25
Figure 3.3 Shell Sort Process Graphc.ccccomvcuriennneeiniiveiciniivssmecssssnsisossstesssssnsasssascs 26
Figure 3.4 Quicksort Process Graphcccooeoiiimneinisicisinrniiiieneicies st ssenssssacnesasnnes P14
Figure 3.5 Unusual Quicksort Process Graphccociiirimmeiiiiiiceienininetienrnnnnecceennennenee 28
Figure 3.6 Taxonomy Treeciiiiiicinririniirinicinnnneeriiineiesesseesesssossansassionsssssnas 30
Figure 4.12 CPU and I/O OVerlapcccooirmiicccirenicnnsaccessnncssssssessssesssssestossorssassassenes 36
Figure 4.1b Markovian State Transition Digramc..cccccvceveneorisicinnricricccnicssssessiecsssnenns k14
Figure 4.2 Algorithm CPMcccoiviiiiiiiiiiinnitiinncenisnrsnnsniesssnansmsenmssesaesessssnsesssssssssssns 38
Figure 4.3 Process Graphocoiiieiiiiiiinarnnssvcrcerereressesssssnssessesssssssssessasassssssssssans 39
Figure 4.3b Markovian State Transition Diagramccc.ccocmiiiiciiinnnrinnnnierecccrcsecsenenenaes 40
Figure 4.4 Balance Equationcccovvirivicrnncrecrsansene cerersssersrsesissesnatensnerasesansren 43
Figure 4.5 Process Graphccccoooivvinernicnireiciimmensstenssstesnressoresstasessssssssassssaressensssnnsnes 45
Figure 4.6 Markov Chainlcoceiriinimrinitieciciineensnrecssereeoeaesrossssseeesaras st ossossassnes 46
Figure 4.7 Structured ahd Non-structured Process Graphccccevcierrnecrvnrccssneesnannes 51
Figure 4.8 Max In-degree NOdescoueeeeceeimernecerorieenremesessrossnssssssrsnssnsresssasssssssssonsenes 54
Figure 4.9 Process Graph with Average System Time Close to the Upper Bound 60
Figure 4.102 Process Graphcccooeeiincnnrccnscnvensssceanonns eterierenanrassteeeesesasratsateresereren 61
Figure 4.10b Petri Netcccoovuvemevcenerercnnnne errreeeretere st b eas s se et st et ansre st ebeae et stensseseans 61
Figure 4.11 Diamond-shaped Process Graphcoviuiiiniriiniereiieeennnnieeteennieitenssesassssesnne 63
Figure 4.12 yversus Pfor L == 10, k== Sand mm 1rreeevirnrnccrnenencsnnnnes 68
Figure 413 ¢y versus P for L= 10, k== Sand mm 2cmvmrricrrininrnneeecnonsinnenes 69
Figure 4.14 ¢ VEISUS 2ueeiiiiieciiiniiinennieieeinisiiciissssesssssseneesossontionessaesessnssnssssnessessssnnses 71

vi

3 ’ ‘. ," .l' ',. VV

.

., A
. D e] # %% e e e
S0 TP FEAVCALGINDE B RN

6, 24ty T
. ety

Figure 4.15 1 VEISUS Peiiiiicccnimeissreiisssnieesioncsssescnsasesanseessnnessssssssssosssennesssnenssessne 72
Figure 4.16 The Upper Bound for the Ratio ¥ccoeoriiininiiiieee e cccceeecenrree e 74
Figure 5.12 Arrangements of Process Grapbs with 2 Tasksccccoorvvverrerrcerernnnneenn. 79
Figure 5.1b Arrangements of Process Graphs with 6 Tasks and 3 Levels 80
Figure 5.2a Chernofl Boundcocociininimroiiinnniriinnsrsascsisesssssseneesssssnsnssasessssses 85
Figure 5.2b Prob [¥ 2 gl oottt st asasessasaens 86
Figure 5.3 Legal Places for Precedence Relationshipscc.cccccoccivinininnniicrnnnensenennernnnes 97
Figure 5.4 Reduced Blocking Effectcccccoreeinemeriscareiiinsutecsessreerscssnnesssssuesrassssssssssanes 98
Figure 5.5 Minimally Connected Process Graphcccovivmmriiiririciiiercrrieeeccneeneeenseenns 99
Figure 5.6 Minimally Connected Process Graph with N=10aad L =6 110
Figure 5.7 Diamond-shaped Process Graphcoueiivieiiiiirinccniireniesicnsnneecsssseneesnns 114
FIBUTE 5.8 S VEIBUS Pooocreircreecreeecnrrssetestissntressnresenssssassasrasesssesssansensnsessasssssnsensasass 120
Figure 5.9 S versus p with L == 10ccccoiiiiiiiiinicirniiriericeeneaiesrcsassrnnensesecsssssesnessssons 123
Figure 5.10 S versus p with L me 20ccccooimiiiriiiiciinncccsentisesensssssannessssssessssssessesans 125
Figure 5.11 S versus p with L == 30ciciiimiimnicricecncrncccreeerenrcrsrereeeesessssnsseassesssssonses 127
Figure 5.12 S versus p with L m= 40cccccriinienniiinnrcsescssecssressnceresssasssessssssessessossessanens 129
Figure 5.13 S versus g with L mm 50cooveviiiirincinsenniiccrstniennnneecesseiesssssessossssesssanses 131
Figure 6.1a Process Graphcccccceeecrceiemrincccsssnnessiossasesessansnsssiessanssesssrssasesssosessssssanes 136
Figure 6.1b Process-communication Graphccccivvcreiiniiciiiiorannenssienecrsesesssssssesssnnnes 137
Figure 6.2 Process-communication Graphcoccevnveiinneeinininiiesencnsisessessssseesesnsenes 138
Figure 6.3 Markov Chain of Figure 6.2cccvniiiiiiiiivcnniiininiiiicisnscisnsnecierecssanesenes 139
Figure 6.4 Process Graph 141
Figure 6.5 Process-communication Graph with P== 2ccoiniiiviiininniernrcserrnenne 141
Figure 6.6 Process-communication Graph with P == 3ocririririireenreneeecsaenensens 142
Figure 6.7 S VErsus Poiviereiiieiiirieerioreneiesnesonessssetrsererntuessessesssseesssssssrssnsssssssssasess 143
Figure 6.8 puSversus Pwith a Family of 6ccocoviiiniiiinerrncccnerceennnescssen e s nesssnenns 144

vii

e A

A it et et AR e S i e g J LR Sndn Sacls Miede Mhedr M Saclh ek b S Jevmi et . e~ R T TTRT———— Y
. T - B - R - - T e Ve m R AR e R

N Figure 6.9 A Process Graphcocivriescinnincsenncnennivenneeiussesessensisssssesessessssssssesens
T Figure 6.10 Process-communication Graph with P=s 2 ...,
.4 Figure 6.11 Process-communication Graph with Pms 3cccrriiiriciineeccceeniieees
j:l'\ Figure 6.12 Process-communication Graph with P =4cccocrrirrrnrrrrrrcennnee
- Figure 6.13 Process-communication Graph with P = § e semmeesessesmssssesenanns erenessensianns
) Figure 6.14 Process-communication Graph with P == 8c..covcimiievcrnreciccnrcenenicrssnnecones
N Figure 6.15 pS VEIBUS Pcoocvuiiiiiccinniiiniensiiosicsissssssnensossasessesssasassssssssssassasassossasans sesns
N Figure 6.16 uS versus P with a specific value of #5°ocoeeeeeeeiivrirerceecccneercaneesssasasnnsens
| Figure 6.17 Process Communication Graphcooeeeiiiiiiinnniiieieisesieineseeressessesmmssssossenes
_ Figure 6.18 Markov Chain Generated from Figure 6.17ccoueiirirvereeecrceererrcneerenee
-
-~
3
X San
A -]
viii = a 3

AR A LA DA N AR B B I A NS T e s A odar NS A N AR A e e o S 8 Sl e A e et e ~
" ..
: "
! .
o List of Tables .
= Page
= R
N
Table 5.1 Simulated S versus predicted Sygc.corvremeisesirunssssnsanissssessescsssisnssesssessuasessssssssenssesss 109]
Table 5.2 Comparison of the P*’s.......cccccuvivucrrnmniormmasssssssssnsssssessssissessascssasmsmssnssssssssnsassens 121
- B
- ~ '
- \’.
~--. &-
."' l\.
: -
.
".
- o
-~ [y
e KX
-..- \'-
.‘. v ‘-'.
¢. .\-
- »
‘- R
> ix -

Acknowledgments

I would like to express my deepest gratitude to my advisor Professor Leonard Kleinrock
for his guidance and friendship. I would like to thank Professors Milos Ercegovac, Mario Gerla,
Bennet Lientz, and Steven Lippman, members of my doctoral committe, for their time and

eflort.

This research was supported by the Advanced Research Project Agency of the Depart-
ment of Defense under contract MDA 903-82-C-0064. Transaction Technology Inc. offered tui-
tion assistance while | was an employee there and supported this endeavor. To my fellow stu-
dents at UCLA, including but not limited to Richard Gail, Mart Molle, Michael Molloy, Randy
Nelson, and Hideaki Takagi, I offer my thanks for their stimulating discussions. Acknowledge-
ment is also due the stafl of our research group, Trudy Cook, Amanda Daniels, Frank Heath,
George Ann Hornor, Linda Infeld, Lillian Larijani, Terry Peters, and Ruth Porty. I am grateful
to members on both sides of my family for their moral support.

Most of all, I would like to thank my wife Amy, whose encouragement and understand-

ing made this possible.

VITA

1974-1976 — Teaching Assistant, University of California, Los Angeles
1976-1978 — Computer Programmer Analyst, System Development Corp.,

Santa Monica, California
1978 — B.S. in Engineering, University of California, Los Angeles
1978 — M.S. in Computer Science, University of California, Los Angeles
1978-1981 — Member of Technical Staff, Transaction Technology Inc.,

Santa Monica, California
1979-1984 — Post-Graduate Research Engineer, University of California,

Los Angeles

PUBLICATIONS

Kung, Kenneth C., 'Interactive Graphics for Graph and Network Applications,’” MS thesis,
UCLA, 1978.

Kung, Keaneth C, and Leonard Kleinrock, 'Flow Deviation Algorithm in a Multi-hop Packet
Radio Network,” Working Paper Report #81006, UCLA, 1981.

Kung, Kenneth C, and Leonard Kleinrock, 'On the Bounds of the Average System Time for
Random Process Graphs,’ Working Paper Report #82009, 1982,

xi

- ABSTRACT OF THE DISSERTATION
Concurrency in Parallel Processing Systems :S
N by .
Kenneth Ching-Yu Kung 7
Doctor of Philosophy in Computer Science)
University of California, Los Angeles, 1984
Professor Leonard Kleinrock, Chair
The idea of multiprocessing has been with us for many years. We would like to know, .
however, how much gain (i.e.speed-up) is really achieved wher multi-processors are used. In
. this dissertation, we model a computer job as a Directed Acyclic Graph (DAG), each node in the
: DAG representing a separate task that can be processed by any processor. Four parameters are
" used to characterize the concurrency problem which results in 16 cases. The four parameters
- are:
i_‘-jl ~ 1. How the jobs arrive: either a fixed number of jobs at time zero or jobs arriving from a
- Poisson source; -
2. the DAG: either the same for each job or each job randomly selecting its DAG;
'Z:j 3. service time of each task: constant or exponentially distributed;
= 4. the number of processors: either a fixed number or an infinite number (infinite number y
of processors meaning that whenever a task requires a processor, one will be available).
: For all cases studied, we define a common concurrency measure which gives a com- ¥
parison of how much parallelism can be achieved. The concurrency measure is obtained exactly 9

for several cases by first converting the DAG into a Markov chain where each state represents a
possible set of tasks that can be executed in parallel. From this Markov chain, and by utilizing
a special feature in the chain, we are able to find the equilibrium probabilities of each state and
the average time required to process a single job. .

. .

R
A .
had o

i

el

.
]
‘l
2
angl

Wt
LT

{
- d

3
9
) <

xii

..

- We also find upper and lower bounds for the concurrency measure for certain cases stu-

.
.

.
lll

died. The upper bound is found by synchronizing of the execution at various places in the
DAG. .

e
,ﬂ‘,.'..'.
. AR

We present two algorithms for assigning the tasks to processors. One algorithm minim- .
izes the expected time to complete all jobs while the other algorithm maximizes the utilization
- of the processors.

PR
PN
e

NS

The communication cost between any two tasks that reside on diflerent processors is
modeled as a task. We study the eflect of the communication costs on the gains that are
achieved from muliti-processing. -

. .
ey
¢)

..
PO

»

.
-
-
-
S

xiii

CHAPTER 1

Introduction

1.1 Distributed Processing in a3 Network of Processors

Central processing units have been the backbone of the computing centers for many
years. These machines are generally very powerful but also very expensive. Communication
petworks transfer data among these central processors so that the processing power of several
processors may be combined and the processing resources may be shared with users of other
sites. But researchers recognize the fact that even though the processing capabilities of each
machine are shared by all users, the large communication time between hosts in comparison
with memory access times often precludes the parallel execution of the same job oa more than
one machine if the networks are slow and/or costly. Thus the processors are often loosely cou-
pled to each other with this type of communication network.

Many applications, however, require the high speed capabilities not achievable with a
single serial processor. The quality of the answer a processor returns in the areas such as
meteorology, cryptography, image processing and sonar and radar surveillance [HAYNS2,
POTT83, ROSES83| is proportional to the amount of computation performed. There are only
two avenues to improve the performance. One is to speed up the processor by having faster cir-
cuits, reducing the logic levels, reducing the cycle time per operation, having high speed algo-
rithms, and having better storage organization. The other method is to try to handle more than
one task within a job simultaneously. The latter is the direction taken by the Japanese Fifth
Generation Computer project.

But despite the impressive speed of many of the latest model computers, their basic
architecture limits them to being serial machines and hinders their usefulness to computationally
inteasive problems. With the recent advances in the design and fabrication of VLSI circuits, a
computing center consisting of up to tens of thousands of computing elements can be built. If
we can decompose a large problem into many small concurrently executable tasks and allow
several processors to work on them in parallel, we can improve the processing speed not attain-
able by serial machines.

P T
D P VA AT W A

T R T—————— L2aath i Shdi B i T

T,

.L_" ('A- 'A 'l. ‘l 'I " .'J

Ll Wratelelel

A N S e

DRGNS DA A ey S0 san Ben Ake 4 FWE
Rt

Of course there is the complexity of multiprogramming and the low utilization associ- g
4

ated with a processing center with so many processotrs.

5
Distributed processing can be defined as an architecture that has no master/slave rela- fl
tions among a set of processors. Instead, all processors are equal and each can access any net- e
work resources without the interference from centralized controllers [PARRS3]. -1
2
Each processor in a distributed processing network, therefore, needs the same basic :::
software tools: ,_j
g
- the operating system software *q
Y
. ‘.J
- the application software 3
<
- the database access method and query language
- a dictionary defining the location and structure of the data in the network
- a directory defining the structure of the network
- a standard message protocol.
N~ In order to distribute the processing of one function among various machines, these pro-
cessors must be conpected in some fashion. Even though there is still some communication
delay, the delay between processors in a locally interconnected switch is much smaller than that
in long haul communication network as described before,
Many issues are involved in distributed processing among a network of processors. In
particular, the following set of problems must be addressed:
1. efficient multi-access communication protocols
2. management of the databases — centralized or distributed
3. network management - file directories [POPES1], network resource directories
4. security and privacy [SCHES3)
5. reliability [AVIZ81, MAKAS81, NG80]
6. topology [UPFA82]

t‘f
L
‘. -
od
v

Nt e e T T e e e m e N e T T T T T T e e e e R - . .- . e .
. R T Y L P I L S S T . R T NP S R I T N T O T

x LR AL U P --.“.'_. - .
a® . RO A R

AR AL e TN
® ot alt alinfifatadiad adodatodas ar” o te a2’ " " et "2

7. scheduling

8. language for parallel processing [HOLT78, SCHUS1, HASE75, HASE77|

9. concurrency in processing jobs

In our research we concentrate on the last item in the above list. Concurrency of the
jobs is not very well understood because the machines have often been used in a serial fashion
and therefore the possibility of parallel execution in a single job has not been extensively
explored.

If we have a large number of processors and these computing elements can be organized
in such a way that they can cooperatively solve a single problem or attack many problems
simultaneously, tremendous speed improvement can be realized. We recognize that in addition
to the service time of jobs there are overhead associated with the organization of these proces-
sors. But this overhead is limited to the organization of the processors assigned to the jobs
rather than the organization of all processors. Besides the advantage of the speed, this type of
system offers a distributed processing environment with increased reliability, availability, expan-
dability and better utilization of resources.

In order to take full advantage of these cooperating processors, we must understand the
parallelism within computer jobs and systems. We wish to find out just how much speed up is

achievable, how do we really coordinate these processors, and whether the communication
between the processors is too costly for distributed processing. At the same time, the develop-
ment of programming languages for parallel processing must proceed at a faster pace. Most of
the existing languages do not allow parallel processing. To pick out the concurrency in these
programs requires extensive preprocessing. Since most of the algorithms are not sequential, once
the language for parallel processing is available, it will be easier to produce programs for the
multiprocessor environment.

AR LA]
‘.l'l“‘l st !

) -4
1.2 Existing Examples ;:f
The idea of performing more than one operation simultaneously is at least 140 years old Y
[KUCK?77]. In an October 1842 publication Menabrea describes Babbage's lecture [MORRS61]: 2
. R

-

-

R

:_w.

2]

Sedh AMGLA ATl B A a S awe Suk a7 snd Sl ke el M el Al RchdRr gy Jiadibe Aiai A i S A S R A I

.. when a long series of identical computations is to
be performed, such as those required for the formation of
numerical tables, the machine can be brought into play so as to
give several results at the same time, which will greatly abridge

the whole amount of the processes.”

So, clearly, the idea of parallel processing has been around for quite a while.

Since the early 1960's, there have been many attempts to speed up execution by giving
the hardware some multioperational capability. The IBM 360/91 is a pipeline machine which
operates on arrays of data. ILLIAC IV [BARNGS| was a parallel array machine with 64 process-
ing elements. CRAY-1 was designed specifically for vector array processing [KOZD80]. The
CRAY-1's Fortran compiler is designed to give the scientific user immediate access to the
benefits of CRAY-1’s vector processing architecture. This compiler vectorizes the innermost DO
loops such that they can be executed in parallel. [ENSL77| contains a list of multiprocessors
and paralle] systems in chronological order for the years form 1958 to 1977.

A good example of using ILLIAC IV is to find the solution to partial differential equa-
tions. The difference method defines the problem on a coordinate system with given boundary
values. Each grid point then uses the weighted average of the values from its neighboring grid
points to find its own value. Since each grid point at each iteration can be processed con-
currently, we can define each grid point at each iteration to be a separate task. Usually several
of these tasks are assigned to one processor. Solutions are found when the difference of the
value for each point between two consecutive iterations is smaller than a predetermined value or
the solution is not obtainable due to the unstability.

1.3 Summary of Results

In Chapter 3, the concurrency problem is model by 4 parameters; they are:

1 How the jobs arrive: either a fixed number of jobs at time zero (k) or jobs arriving from

a Poisson source ()\)
2. The DAG: either the same for each job (G) or each job randomly selecting its DAG (G°)

3. Service time of each task: constant (z) or exponentially distributed (z°)

".'/'{"n ’

e

"r
NSNS

PR BN

The number of processors: either a fixed number (P) or an infinite number (P = o)

A process graph is defined (in Section 3.2) as a directed acyclic graph where the nodes represent
the tasks within a job and the edges represent the precedence relationships among the tasks.

We use the shorthand notation "a, 8, v, & where «, 3, v, and § represent how the jobs
arrive, the type of DAG, the service time of each task, and the number of processors, respec-
tively. For example, k, G, z, P = oo is shorthand notation for a system with a fixed number of
jobs at time zero, a fixed process graph, a constant service time for each task and an infinite

number of processors.

From these four parameters, we have sixteen separate cases as shown in Figure 3.6.
Besides the two trivial cases (¥, G, 7, P = o0, and)\, G, z, P = o0) discussed in Section 3.5, the
case of fixed process graphs is discussed in Chapter 4 and in Chapter 5 we discuss random pro-
cess graphs. For all the cases studied, we look for a common parameter - the concurrency meas-
ure, o, which is defined (in Section 3.3) as the average time a single job spends in the system
using P processors divided by the average time a job spends in the system when only one pro-

cessor is used.

1.3.1 Fixed Process Graphs

For the k, G, z°, P = co case {Section 4.2}, we develop a method for finding the average
system time. Because the number of processors is assumed to be infinite, the results obtained
are independent of the number of jobs, k. The process graph G is first converted into a Markov
Chain by Algorithm CPM (Section 4.2.1.1) where each state represents a possible set of tasks
that can be processed in parallel. Since we know the rate out of and into each state, we have a
set of balance equations. If we put these balance equations in a matrix format, we have a lower
triangular matrix which can be inverted easily to obtain the equilibrium state probabilities.
From these equilibrium probabilities, we can find the average system time and the concurrency

measure 0.

Bounds on the concurrency measure are relatively easier to obtain than the exact value.
An upper bound can be found by forcing the execution of a job to synchronize at each level of
the process graph. No tasks in a level can start execution until all the tasks in its previous level
have completed execution. We first study the average time required for a node to wait for all
its predecessors in the previous level to complete. In each level there exists a node which has

the maximum number of edges entering it. Therefore, no tasks in this level can start executing

P

el

B

-
R
"
.

MEAZAt e e e e A S e A A S e SR S W i A Chcat et S it e A R R R

until all the predecessors of this task have been completed. By summing the time required at
each level to process the task with the maximum in-degree, we obtain an upper bound on the

average system time.

A lower bound is simply the average processing time of a task multiplied by the number

of tasks in the longest path from the initial node to the terminating node.

For the)\, G, z°, P = co case (Section 4.3), the results obtained in Section 4.2 can be
applied directly. With an infinite number of processors, once a job enters the system, it is
immediately served and no waiting time is required.

We briefly discuss the case of k, G, z°, P < oo using the Stochastic Petri Nets model in
Section 4.4. Any process graph can be converted into a Petri Net. A ’'place’ representing the
available processors is added to the Petri Net such that at each 'transition’ if a processor is
needed, a 'token’ is obtained from this place, and whenever a transition with a processor token
finishes, the token is also returned to this place. By using the analysis provided by Stochastic
Petri Nets theory, we can find the average utilization of the processors.

In Section 4.5, we study the assignment problem for the case of £, G, z, P < 00. Two
scheduling algorithms are analyzed for diamond-shaped process graphs - one algorithm gives the
worst case assignment and the other algorithm gives the best case assignment. By studying the
ratio of the average system time using the worst algorithm and the best algorithm, we find that
the ratio between the two assignments is not large (less than two). Therefore, if we allc w for
random assignment (an available processor is given to any task that is ready to execute), the
resulting average system time will fall in between the two boundary values.

1.3.2 Random Process Graphs

In Chapter 5 we look at some o! the properties of random process graphs. We find (in
Section 5.2.3) that the number of arrangements for N tasks with respect to the number of levels
may be approximated by a Gaussian distribution (recognizing that this approximation permits a
negative number of levels, which is clearly impossible). Since no arrangements can have less
than one level, we assume the probability of any arrangement with less than one level equals to

zero. In other words, most arrangements have % levels as N becomes large. Using the

Chernofl bound, the tail probability of this distribution is found in Section 5.2.4.

o e TR RO ‘—-'!,"!'!"!"!'!".'!'."F. T ay— o el gtos e fa e s S i St B it Jnde S e S it S S Jh St

i it e A
yoa e

In the case & G* z, P = oo, as N approaches infinity, where N is the number of tasks

within a job, we find the average system time approaches the value of % multiplied by the

L. 1
average task service time, and the concurrency measure approaches 5

For the case k, G*, z°, P == 0o, we found and proved an arrangement that will provide
the upper bound for system time over all arrangements with N nodes. An upper bound is

presented in Section 5.4.1.1 while a lower bound is presented in Section 5.4.1.2. Both bounds

are expressed probabilistically; they are approximately -;— 1—:- <5< % -;‘N- where S is the aver-

age system time of a job, N is the number of tasks within a job and % is the average service

time of a single task.

If the number of precedence relationships is also given, ther we define the minimally
connected process graph in Section 5.4.2.1. M, is defined to be the minimum number of edges
required to fix all the nodes of a particular process graph at their proper levels. We also give
expressions for Maz M, and Min M, for any process graph with N nodes and L levels. Using this
concept, we give an upper bound in Section 5.4.2.2. Section 5.4.3 then compares the two upper
bounds obtained in Section 5.4.1.1 and 5.4.2.2.

In Section 5.5, we try to find the optimal number of processors a diamond-shaped pro-
cess graph in the case &, G, z, P < oo will require such that a function called power is maxim-
ized. Power is defined to be the average utilization of the processors divided by the normalized
average system time [KLEI79]. An expression is provided for the optimal number of processors
per job.

Section 5.6 briefly discusses two loose bounds for the average system time for the case
k, G’ z, P < o0.

1.3.3 Communication Overhead

For the case &k G, z°, P == co, we study the eflects of the communication overhead
between processors. We add a communication task between any two neighboring tasks in G
that do not reside on the same processor. The average time for the communication tasks is
expressed as a multiple 'a' of the average service time for a regular task. Using the same tech-
nique presented in Section 4.2, we find the resulting average system time as a function of 'a’.

T
£, 5y 5y

.
o
LY

.
~
-

e JRius venc Auae S Antnn e Mite S ey Sl Ao & S e 4

In Section 6.2, we limit the number of processors to P, and study the effects of the com-
munication overhead with various values of P on a process graph. By varying the parameter 's’,

we obtain a family of curves for the average system time versus the number of processors.

In Section 6.3, we put a further condition on the communication overhead by allowing
only one communication bus. Thus, only one communication task may be transmitting at any

2
:{.:- particular instant. We modify the technique of Section 4.2 for the analysis required in this sec-
<

% tion.

LY . et et .
s T 0 e e -

CHAPTER 2
Background and Related Work

2.1 Brief History

In the late 50's, relatively few people knew how to work with computers, and an entire
computer was dedicated to one person at a time. If one needed to use the computer, he would
reserve 3 time slot, and the machine during that time period would be dedicated to him. Each
user waited for an empty time slot in order to use the machine (i.e., the sign up sheet was the
scheduler). The advantage of this concept was that each user had the full processing power of
the machine while he was using it. The drawback, op the other hand, was the low utilization of
the processor since users spent great deals of time thinking.

As the machine became faster and more costly, it was not economically feasible to
maintain the previous arrangement. To utilize the machine more efficiently, users were required
to punch their computer jobs on cards and submit them to a computer operator. The computer
operator would then schedule jobs by putting the cards of different jobs into the card reader in
some predefined order. In this manner, the computer was kept busy most of the time, but the
turnaround time for jobs could not be predicted and could vary from several hours to several
days.

The next step was a compromise between the two extremes of either low utilization but
dedicated machine or high utilization but long turnaround time. Operating systems were
developed so several jobs could share the processing facilities of the system at the same time.
Priorities were given to jobs so that interactive users who required small amounts of processing -:i
time had the highest priorities and long batch jobs had the lowest priorities. Because the .
memory was also shared among the users, paging and the technique of virtual memory were
developed. Varjous methods of sharing the processor were studied and used to increase the
throughput and to lower the average waiting time of jobs.

An expensive and powerful central processing unit has several drawbacks. The over- d
head of the operating system software in controlling a multi-programming environment is high.
Jobs are constantly being swapped in and out of the high speed memory. Such operating sys- _
tems are also very cumbersome, as witnessed by the fact that there are still errors in the .
IBM/MVS operating system,despite many releases.

,,,,,,,

The central processor also has the problem of reliability and availability. When the
processor in a single processor machine goes down, the entire machine is not available to users.
A few computer manufacturers have tried to solve this problem by introducing the fault-tolerant
machine (e.g., NONSTOP MACHINE™ by TANDEM). It is comprised of several processors
and memories with the operation of one processor backed up by another processor; so, whenever

one processor goes down, its twin processor will start up right away.

I
S Te e e

This leads to the multi-processor environment that we are addressing. As computer
jobs enter the system, they are processed by one or more identical processors. Thus, the system 3
will be running even though several processors might not be available, and it is more reliable :
since any processor can process all the jobs. As the price of the VLSI keeps on dropping, it will
be possible to build a computer center consisting of large numbers of processors. They are many
difficult issues related to multi-processors as mentioned in Chapter 1, but we would like to
explore the concurrency within the jobs and to take advantage of multi-processing for improve-
ment of system performaece.

2.2 Graph Model of Behavior

Our representation of jobs, as described in Chapter 3 and used throughout the later
chapters, is similar to the UCLA Graph Model of Behavior (GMB), which uses a control graph
and an associated data graph. The control graph is, essentially, a variation of the Petri Net
because the edges represent conditions and the circles the transitions. Logic expressions are -~
assigned to the sets of both input and output edges. These expressions are made up of 'and’ and _
‘or’ logic. Computation is simulated by the movement of tokens from edges through nodes to .
edges. The logic expressions determine from which input edges the tokens are removed and to o
which edges the tokens are delivered. Each processor is associated with one or more operations
in the control graph. When an operation is initiated by the control graph, the processor associ-
ated with that operation executes its procedure. For each operation, the data graph provides
the locations for both the input data and the stored output data. After the control graph has
been determined, analysis of the GMB is carried out by simulation. This requirement for simu-
lation places a large overhead on the analysis of each problem. Part of our work is based on a
whole class of jobs instead of an individual job; hence, it is easier to obtain system parameters

et

and to generalize for a large number of jobs. .

(G

10

ERVRV ARSI

()
a

..........
.......

.................

..........

AR SN S T WV L W Wy Ve

In a series of works on GMB, 2 sequence of researchers [ESTR63, MART66, MARTG67a,
MART67b, MART67¢, MART69, BAER68, BOVE68, RUSS69] associated various types of input
and output logic with each node of a directed graph model identified the random variables
which arise as a result of the application of programs to different sets of input data and applied
the model to evaluation of the effectiveness of parallel processor systems. In the course of these
studies, they evolved algorithms for the transformation of cyclic graphs to acyclic graphs, main-
taining equivalence of the graphs in the sense that mean path length is preserved for any
transformed cycle [MART67b]. They developed eflective algorithms to calculate the probability
of ever reaching a given node in the graph [BAER70| and formed upper and lower bounds on the
numb?r of processors required for maximum parallelism |[MART69, BAER69]. Fernandez
[FERN72] transformed the acyclic graphs by adding precedence relationships in such a way that
the execution time of the resulting graph does not change but utilizes the minimum number of
processors. Using GMB, Ramamoorthy [RAMA72] also scheduled the tasks such that the total
execution time is minimized, and the minimum number of processors required to realize this
schedule is obtained.

2.3 Related Work

2.3.1 Petrl Nets

Petri Nets [PETES1] were designed to model systems with interacting concurrent com-
ponents. They are widely used in the area of software verification. By modeling a program
using a Petri Net and generating all possible 'markings,” we can detect the existence of
deadlocks. By themselves, though, Petri Nets ignore the random time duration between the
firing of two transitions, i.e., the time interval between two markings of a Petri Net. In
[RAMAS0], a constant time unit is associated with each transition. The performance is meas-
ured by finding the minimum cycle time, which is the time required to process a job. Molloy
[MOLLS]1] introduced the Stochastic Petri Net (SPN), in which a random variable representing
the firing delay is assigned to each 'transition.” Each marking in the Stochastic Petri Net, which
represents a set of concurrently active tasks, is associated with a state in a Markov chain. By
solving for the state probabilities in this Markov chain, we can obtain the density of 'tokens’ in
each place or each marking. In Chapter 4 we will show how this model can assist us in solving
for some system parameters,

PR
e
ooty

T ———————— M e e e S i - D T e Y T

-

A disadvantage of the SPN is that each marking reachable from the initial marking is a

state in the Markov chain. As the number of tokens increases, the number of states in the Mar-

kov chain grows at an even faster rate, making the SPN analysis very difficult. For this reason,

the SPN cannot model a system with open arrivals, where the number of jobs is undetermined

or the

number of tokens and states is unlimited. Even when analysis is possible, a generaliza-

tion of the result obtained for one specific job to other jobs is not possible.

2.3.2 Automatie Detection of Parallellsm

Parallelism in programs may be either explicit or implicit. Explicit parallelism is

specifically indicated by programming features such as COBEGIN/COEND.

stated.

Implicit parallelism is the parallelism that exists in the algorithm but is mot explicitly
Some common techniques used by compilers for detecting implicit parallelism are:

Loop Distribution

Sometimes the statements within the loop may be executed in parallel. This idea was
introduced by Muraocka |[MURA71] and later was implemented by Kuck
[KUCK72,KUCK?74] in their FORTRAN program analyzer to measure potential paral-
lelism in ordinary programs.

Tree Height Reduction

By making use of the associative, commutative and distributive properties, compilers
may detect implicit parallelism in algebraic expressions and produce object code for
multiprocessors. For example,

((p+q)+r)-9)
can be replaced by

(p+g)+(r-)
and

es(beced+e)
can be replaced by

asbeced + are

Assuming that only associativity aad commutativity are used to transform expressions,
Baer and Bovet [BAERGS| gave a comprebensive tree-height reduction algorithm.

12

Later, Beatty |BEAT72| showed the optimality of this method.

In [RAMAG9}, a survey of techniques for recognizing parallel processable streams in FORTRAN
programs was presented. These algorithms are primarily concerned with detection of parallelism
within the arithmetic expressions. The problem of protecting common data was recognized. If
two tasks are executed in parallel and they both access the same data cell, then different orders
of execution will possibly result in different answers.

Russell [RUSS69] developed an interactive system in which a graphical display of poten-
tial parallelism in Fortran programs together with detected bottlenecks, is presented for further

analysis by the use.

In [KUCK77], the possibility of speed up in FORTRAN programs is also studied. Three
levels of parallelism were discussed. They are:

1. Parallelism within a line of code

This referred to the reduction of the tree height in an arithmetic expression.

2. Parallelism within a program
Concurrent execution of the loops in a program was explored.

3. Parallelism within the hardware

The hardware organization of pipeline and array processors was discussed.

Several specific FORTRAN programs were analyzed [KUCK72,KUCK74]. They showed the
speedup of the programs and the efficiency and utilization of processors for each of the pro-
grams. All of the programs resulted in some speed up, most of them by a large amount. The
utilization is, as expected, quite low. But most interestingly, they conclude that, as the number
of processors increased, the speed up is more than the logarithm of the number of processors
predicted by Amdahl in [AMDAG7].

13

RA Al et At o as ag ans o o]

2.3.3 Muitiprocessor Hardware Organlzation

he Oune of the problems in the design of a multiprocessor system is determining the means \

of connecting the multiple processors and the I/O processors to the storage units. -

The four common multiprocessor system organizations are:

1. Bus ‘:::

The bus organization uses a single communication path (such as Ethernet) between all :l:;

¢ functional units ~ processors, storage units and 1/O processors. Multi-access protocols i"
[are required to share this common transmission medium. i ‘
: |
2. Crossbar-switch S

In this organization, there is a separate path to every storage unit. The hardware must J

be capable of resolving conflicts within the same storage unit.

3. Shuffle/Exchange [THANSI]
In the Shuffle/Exchange network, there exist logs N columns of routing switches connect-
ing N processors to N memory modules. Each column consists of N/2 two-input, two-
output switches. Figure 2 shows an example of this organization with N = 8,

4. Hierarchbical [THANS1|
A hierarchy is imposed on the set of processors and memory units. In such a structure,
each processor has immediate sccess only to part of the system memory. Any reference
to remaining memory must be bandled by a higher level processor.

Two examples of this organization are C-mmp and Cm’ C-mmp
[SIEW782,SIEW78b,WULF80] is a 16-processor system consisting of PDP-11/40 mini-
: computers. The processors share 16 storage modules through a crossbar-switch matrix.
. Cm* [SIEW78a,SIEW78b,HAYNS2b| consists of 50 LSI-11 microprocessors. It is con-
: structed from processor-storage pairs called computer modules. Each of these is referred

i to as 3 Cm. Cm's are grouped into clusters, and clusters are connected by intercluster
! busses. : }
r)

T A
[} ,]

S
PRI
PO AT O

A
:

v

[
L4

Y T S

W TR T grewyw s wye

o) - o 'n < 0 w0 ~
Iz IE |2 lS ,2 IE ’E |E
' -] ¢ [

o ™
2l 1=l el 12l x| il le] (=

Figure 2 Shuffle/Exchange Network

T
DTN N T
CHU TR T W1 AP SL IV, WA

2.3.4 Theory of Branching Processes

- The theory of the branching process |HARR63| deals with the problem of taving one
node initially, with probability, p,, that there will be k descendents at each iteration, i, for each

of the nodes on the (i-1)* level, k=0, 1,2, - - . It deals with the expected number of des-

cendents at the i'* iteration would be, and what would be the probability that, after i iterations B
{for a large 1), there would be no descendents left. The tree of descendents obtained is similar to -.
the structured process graph described in Chapter 4. Since the number of descendents at each :::
level is random, the resulting tree can also be thought of as a random process graph (defined in _J

Section 3.3).

The generating function of the number of descendents at the i** iteration was found to

be [f (2)]*, where k is the number of descendents at the (-1)* iteration,
S
Ha)= Y pr 2
=0

and z is the transformation variable. The expected value and the variance of the number of

nodes at the if! iteration have been found. 2]

Two problems, however, prevent this model from representing the tasks in computer
jobs. One is that there exists the possibility that the descendents will not die out. This
corresponds to the fact that a computer job will not terminate. If the descendants do die out,
another problem is how to merge the task having no descendants together. This corresponds to
the question of how, after individual tasks are completed, the results are to be incorporated into

each other to form the final solution.

2.3.5 Bounds on the Average System Time

In {ROBI79], bounds on the average system time of a tree-shaped process graph were

obtained, using arguments similar to those that we have used in Section 4.3.

N . . .

Since the process graph is in the form =f a tree, there exist distinct paths from each task
toward the root of the tree (the terminating task). Let C, C, - - - , C, be all the paths from
leaf tasks (i.e., tasks without any precedence relationships entering it) to the terminating task,
and let H, be the set of all tasks at level i, for 1 < i < L, where L is the number of levels in the
tree. Assume that the number of processors is infinite and that each task 7, has a random pro-
cess time equals to {,. Then, the expected time to process this process graph, S, is bounded by

R AR

'
AT
. A
o a0t i

16

"

- . < e e . B R Tt S T R ST s
b W= o L. PRS- S . S S VA O S U R S r A L S P R

A

Maz

1€1€m

Z E(ﬁlaz t,]

1L\ TeA,

5 E(Y) <5<
7,

In Section 4.2.2, we develop this bounding technique for general process graphs (using
the concept of a "structured process graph”) instead of restricting to the special case of a tree-
shaped process graphs.

2.3.6 Task Scheduling

There are many scheduling algorithms in the literature. However, the majority of them
deal with the single processor scheduling problem. In this section we look at some algorithms

that discuss the scheduling problem in the multiprocessor situation.

Price [PRIC83| discussed a shortest path algorithm which is used to solve the scheduling
problem of assigning tasks to processors. First, a distributed algorithm for finding the shortest
path from one node to all other nodes in a directed acyclic graph (DAG), using as many proces-

sors as needed, is presented. At the i

iteration of the algorithm, the shortest path from the
root to node j, &, is computed as the minimum of the distance obtained at the (i-1)* iteration,
&1, or the distance from other nodes at the (i-1)* iteration plus the edge cost to node j, ey

where kis a neighbor of node j:
4\ = min (dfY, dfV4e,)

This computation can be performed in parallel at each node. For an N-node DAG, this algo-
rithm will find the shortest path to all nodes at the end of the N** iteration. To use this algo-
rithm to solve the task assignment problem, we execute the following changes. Suppose e, is
the cost of executing task on processor j, and c,; is the cost of communication incurred if task ¢
and task k reside on different processors. The desired assignment [PRIC81, PRIC83]| is one which
minimizes

N1

P N
L X cuzy o

N P N N
C=Y Yeyz,+3 Y cu
smm]] m] yem) bumrdl

=) yum]

P
where z, == 1 if task i is assigned to processor j, z, = 0 otherwise, E z, =1 for all i (each
o=t
task 1 is assigned to exactly one processor) and P is the number of processors.

17

e kT e T T
LA AP

.......

If the process graph is tree-shaped, then a DAG is generated from it by creating N+P
nodes

(1) - [LA2Y] - (2P [N - - - [NA

where node [i,j] represents the assignment of task i to processor ;. In addition there is an initial

node [0] and a terminating node [f]. Edges are generated by the following rule:

. edges from [0] to [5,j] are labeled with ¢, where i corresponcs to the root task in the pro-
cess graph.

- edges from [i,]] to [k,j] are labeled ey,

- edges from [i,5] to [r,q] are labeled (e,, +¢,).

- edges from [i,7] to [i,4 and from [i,5] to [i,;] do not exist.

- edges from [i,j] to [¢] are labeled with the value O for every task i that is a terminal task
in the process graph.

A specific assignment of N tasks to the P processors consists of a path from node [0] to node [,
and the optimal assignment is the path that minimizes the objective function C.

Stone [STON77| uses the Network Flow Algorithm to solve for the optimal solution of
assigning tasks to two processors. The N tasks are so connected that the edge weights represent
the cost of inter-task references (the communication costs) when the two tasks are assigned to
diflerent processors. Next, two nodes, S; and S, which represent processors P, and P,, are con-
nected to each task with the edge weight representing the cost of executing this task on that
processor.

Assuming that all the edge weights are the capacities in a flow net.work; Stone finds the
maximum flow from S, to S, A cut set is found which divides the tasks into two sets. The

tasks in the same set as S; are assigned to processor P, and the other tasks are assigned to pro-
cessor P,.

Although this method does provide the optimal solution, it is not easy to generalize into
cases with more than two processors. In the case where P is very large, this method is, indeed,
very difficult to apply. ’

i

!'l-'.
PRI

o9

I

[

18

.
s
A

R
. s -
" W S

A
. RS
e

.........
L PRI

Van Tilborg [VANT81| discussed the Wave Scheduling technique. The processors are

organized into a tree-shaped hierarchical structure with the 'worker’ processor at the leaves and

'manager’ processors at the higher levels in the control tree.

Assume that a job requiring S processors enters any processor (either worker or
manager). If this is a worker processor, it will pass the request to its manager. The manager at
this level will try to assign S tasks to the workers under its control that are not busy. If it can-
not schedule a job of size S, the job is passed up the control tree one level at a time until a
manager can find at least § workers under its control that are not busy and assigns the workers
to the tasks. Because of the communication delay, the manager might not have updated infor-
mation regarding the busy status of all the workers under his control; therefore, the manager
will always try to assign the S tasks to P processors where P is slightly larger than S. The
difficulty is then to estimate the value of P.

Lee [LEE77] studied the problem of optimally assigning tasks to processors by minimiz-
ing 3 cost function, which is the sum of two parts:

1. processing cost of a task on the processor assigned,;

o

communication cost, which is the product of the volume of data to be transferred and
the distance of the two processors measured by the number of hops or the physical dis-
tance.

He then discussed several assignment algorithms that minimize the above cost function for tree-
shaped process graphs and more generalized process graphs.

Except for the algorithms discussed in [LEE77], none of this previous work included pre-
cedence relationships among the set of tasks. In Chapters 4 and 5, we do incorporate pre-

cedence relationships among the tasks into the scheduling algorithms.

2.4 Discussion

In this chapter, we introduced some background information on why multi-processor
systems have become more important. We looked at some results obtained from the analysis of
the Graph Model of Behavior and some previous attempts which take advantage of parallelism

existing in programs. Some multi-processing hardware organization(s) and the scheduling prob-

lems on multi-processors were also studied. As summerized in Section 1.3 we extend these
results to our model of computer jobs and find the speed up achievable in the multi-processor

..';_I._‘YA‘;‘ P

s e e e
—h

e

environment.

A T RN A RS0 A Rt Al AR e i e g g Mt Mo ity Shes Jauit Bdoae Ses Jngn g 2

CHAPTER 3 "
A General Model

i
'

.
5

We define our system to be a set of processors plus a queue with unlimited waiting
room. In the case where there are a fixed aumber of jobs in the system, all jobs are initially
g present; otherwise, jobs arrive at the system by some random arrival process. Each job brings
to the system a set of tasks represented by a process graph (described in section 3.2}, and each
task requires processing by a resource (described in section 3.1). A job departs our system after
its final task has been completed. The system time of a job is defined as the interval from the

time of arrival until the completion time of the last of its tasks.

3.1 Resources

The resources studied here consist of a set of identical processors, connected via a local j'-
C o~ communication network, and each capable of independent operation on a single task. In this .
dissertation, we concentrate on the problem of task assignment; we defer questions regarding the
types of connection networks most suitable for parallel processing communications, the amount
:;:' of storage required for each processor in order for it to process the largest task assigned to it,
the amount of communication bandwidth necessary to keep the communication time small in i
- comparison to the processing time and the overhead of this communication to the references
[METC76, BUX81, KIES81, LELA82]. Of course, we recognize that there will be higher com-
munication delay if the tasks of the same job are assigned to processors far apart in the proces-
sor network. In Chapters 4 and 5, however, we assume that this communication cost is free (or
as an approximation, that the average delay is incorporated into the processing requirement of
each task); in Chapter 6 we bring the communication cost into the model.

The processors are identical in terms of their capabilities in processing speed and
storage. Usually, the total number of processors is assumed to be a fixed constant, P. In some
cases where we have enough processors to keep all executable tasks busy, we assume P is
infinite.

2,
) P

t,"

¥

'l.'

Pl A-' o
) [ATArS

- s 8
.
WA NN ILPOM

21

.
R
0
»
.
‘e,
~
-
K
.

S A A N T S VT 7w,

3.2 Process Graph

Each computer job is represented by a set of tasks, T, and a partial ordering of these

tasks (given by a set of precedence relationships). We represent a task by a node and represent

a precedence condition, where task i must be completed before task j, by a directed edge from i
to j, denoted by (i,7). In the following, all directed edges point downward in the graphs; there-
fore, we will not put the arrows on the edges. In the following discussion, we distinguish neither

between nodes and tasks nor between edges and precedence conditions.

We use the directed acyclic graph to represent the tasks in a computer job. Each node
is a task that requires processing, and the edges (i,j) are used to prevent the starting of task j
unless task ¢ has been completed. Two tasks can be executed in parallel if and only if every
predecessor of one task does not include the other task, and vice versa. The precedence rela-
tionship into a node is an 'and’' type operator. Suppose {z,,z, - - - ,z,} are the nodes having
edges into node z,, Then zy may start execution only after all of the z, for 1=1,2, - - - n, have
completed execution. Without loss of generality, we assume there is only one starting node and
one terminating node for each job. If there are several nodes with in-degrees of zero, we can
add a new node with in-degree zero and which points to each of these nodes. Similarly, for
several nodes with out-degrees of zero, we can add a new node with out-degree zero and then
create new edges from all these nodes to this new node. The resulting directed acyclic graph is
called a'process graph. Figure 3.1 gives an example of a process graph.

Two parameters characterizing a process graph are its length and width. The length in
a process graph, sometimes referred to as the total number of levels, is the number of tasks in
the longest path between the starting and terminating nodes. We place a node j at level i if

§= max 6,,] where §, is the pumber of tasks in path u from the initial node to node j, and U'is
uc

the set of all paths from the initial node to node 5. The width of a process graph is equal to
max [number of tasks in levels]. In Figure 3.1, there are 5 levels and a width of 3.
1]

Process graphs have a hierarchical structure so that each task in a process graph could,

by itselfl, represent another process graph. This property can be useful in describing an operat~
ing system or a computer program. In an operating system, the nodes in a process graph could
represent the jobs to be run. Within each job (or mode), there is another structure of pre-
cedences which represents the execution order of the tasks. A similar situation exists in a pro-
gram environment. Subroutines can be represented by a node in the process graph, and within
each subroutine another process graph could exist with each node representing an executable
block of statements. This hierarchical structure provides a useful tool in studying the schedul-
ing problem at several different levels of complexity. When a more detailed schedule is required,

. e N e e e T T
S A P . - AN
"t Ao

X L . B T T P St . St
LI N R R PR S -
DL Y W A SRR P A P

.
P)

b) (1,2), (1,3), (1,4), (2.5), (3,5), (4.6), (5,7).
(5.8), (6,8), (6,9), {7,10), (8,10), (9,10)

Figure 3.1 a) a process graph
b} a list representing the precedence relations (i.e., directed edges)
in a process graph in a).

g
") I PR T T S
LSRN PR R

-\ -
-.\

.-‘

I‘ %
-, 2
-.. '.
I.' :

RN N
P L S S R RO P e OO
AR PP A A AP PR PR L L e e

i s ¢
g S e e e

each node of the process graph can be expanded into a finer process graph so that more detailed
tasks could be individually scheduled. The opposite is also true; we can schedule the nodes,
each of which represents a group of tasks in the original process graph.

Examples of process graphs representing some actual jobs include:

1. N x N matrix inversion
After the initialization task, we can concurrently calculate the determinant and the N?
cofactors. But each of the cofactors (say, i** row and j* column) is, in turn, computed
from the (N-1)x(N-1) submatrix by eliminating the i** row and j* column of the origi-
nal matrix. Therefore, each task may expand into more subtasks. This recursion stops
when there is only a 2x2 matrix remaining in each of the subtasks. Figure 3.2 gives a
typical process graph for the matrix inversion problem.

2. Shell Sort
Shell Sort [KNUT73| sorts every A® number in order. It then sorts
A, A2, - - - and A{* numbers in order at each iteration, respectively. The numbers
B¢ By, © - - By are integers with A, > A,_;; so, the number of parallel sorts depends on

how many numbers are to be sorted and the values of A, =1, 2, ...,{. Figure 3.3 shows
a typical process graph for the shell sort.

3. Quicksort

Quicksort [KNUT73] uses the first number (the key number) in the list to divide the list
into two parts. The left list contains all the numbers smaller than the key number; the
right list contains all the numbers greater than the key number. These two lists can
then be sorted independently by repeating the above procedure (i.e., use the first
number of each list as the key number and sort each list into two more lists). This sub-
division continues until there is only one or no task remaining in the subdivided list.
Hence, a typical process graph might look like Figure 3.4. Because this sorting pro-
cedure depends on the value of the first number in the list, however, some unusual pro-
cess graphs such as those in Figure 3.5 can result.

In later chapters, we will consider two cases of process graphs. In one case, the struc-
ture of the process graph for each job is fixed and known in advance. In the second case, each
graph bas a random structure; so, each job may have a different process graph.

24

LI IR T 8" PR T I Y S |

¥
Py ol

34

RS T AN

| AR A AN AN AR) ol S0 Jrie e arsa i S e A e g B2 h A Ak Aen e a0 A e e ane an ool - NS he St SES G0 el A dad e e - -

CCFACTOR
EVALUATION

Figure 3.2 Matrix Inversion Process Graph

.
o

e .
A SR
. ata'ata’s o’

©e T

.
2l

25

‘
aalas

. -
'll

- -t B A - IRt N - . S
- B P - - oW o .- PR e,
L Ve Tt
- L Y
>t N T

PO SR A A A ERTIN .
DA, P PR AR AL A P AL

- 2 WY = T
o Aok Shate. shur § A B s St ek s Tt B At 2 2b® 20 g et gt 20 g Ziat 2ok 3 i e 2 AAIRSCIA s St Se S S
BRI it USRI At A A s e Sl it e it St gt e e & Bt St Jhgi gt St i R g R DAL

Figure 3.3 Shell Sort Process Graph

Y

N TSI |

.
.
v
.
.
]
»
’

Figure 3.4 Quicksort Process Graph

r

v ’
’ Ifl‘»,"

L

r

. et A daadh S P

Figure 3.5 Unusual Quicksort Process Graph

K o,
LY .'.
- Y . LI SN 't\ W .
: . - - - - .‘ -I -~ .v -\ - - o
.- . AR MO SN 4N L S TR G e N
EACATAYS O - . l\' ._f.__"lfc."‘;";'_s.'f ottt

©

3.3 Taxonomy

We have divided the task assignment and scheduling problems into sixteen cases. The

parameters used for the classifications are:

Number of Jobs

We can have a fixed number of jobs, k, at the start (time t=0), or we can allow jobs to

arrive from a Poisson source with an average arrival rate of X jobs/sec.

Types of Process Graph

Each job in our problem can have an identical process graph, G, or each job can have a

random process graph, G°.

Processing Requirement of each Task

Each task may have either a constant or a random processing requirement. In the latter
case, the random task time for a fixed process graph can be sampled once at the begin-
ning and used by all jobs or can be sampled each time the task is being processed. If the
random sampling is done only once, it can be reduced to the comstant processing
requirement case by transforming each task into a chain of tasks, the length of each
equal to the service time requirement and each task in the chain having one normalized
time unit of service demand.

Number of Processors

The number of processors is given by P. If there are enough processors so that each task
can be processed whenever needed, then P can be treated as infinite.

With the terms defined above, we can summarize the sixteen cases with the taxonomy

tree in Figure 3.6.

» v -y -4.!‘.. Dy -.14 ‘1... TS
T T T e ¢ L etefeTe e F.. y
P, .
P,
p.
‘-
4
-,
y
'.
3
3
n.
b PIsSNIsIp jou
! A passnosip pessnosip 96 9 cr
¥ r B ¥y lou S€ lou ¥Ss ¢ £€S S» Zr 9y St
P, @ () ®) @) @ @, @ @ J @ J ® @ ()
#
8 L LW 0= omy 00 =y 0 g} 0=y 00 =y oy
.
F, w>d «>d ©>d o >d e >d w>d w>d
() ° Q ° .
&
[)
>
x X x X x m
e
K 8
® @ ®
©
(2]
[
=)
D D e

— P r—p— T T Y T Ty

At the Brst level, we distinguish whether there is a fixed number (&) of jobs at time t=0
or whether jobs keep on arriving (at rate of \) after time t=0. The second level deals with the
type of process graph for each job. All jobs have either the same process graph (G) or random
process graphs (G*). The next level separates jobs with constant task time (z) from jobs with
random task time (z°) service demands. We also include a fourth level for anmy situation in
which the number of processors, P, is greater than the maximum number of concurrent tasks
that demand processors.

For all these cases we are interested in a parameter we call the concurrency measure, o,

which is defined to be the average system time required using P processors (S(P)) divided by
the average system time required using one processor (S(1)), that is

% measures just how much parallel processing is possible for a particular job, that is, % is the

"speed up” factor. Note further that ;I—P is the efliciency of each processor. In our notation,

when P = oo, we really mean that we have a:-large number of processors, say P‘, {i.e., max-

imum width of a process graph multiplied by the number of jobs) instead of an infinite number

of processors; thus, the efficiency }l’; is not to be interpreted as zero for P = co” but rather

the efliciency is —1—;-
o

A large speedup may appears as a good architecture, but the efliciency of the processors ‘
is also important. It is easy to get an efficiency of 1, but this system will be very slow. This -
tradeoff is studied when we discuss the issue of power (in Section 5.5). Note also that the max-
imum speedup is

1 _ S(1)
=3P P

Some of the other parameters not considered are
- task interruptibility (preemption)

- homogeneous versus heterogeneous processors

~~~~~~~~~~~~~
........
......




PP TR Tpwpanpey ey T ————————~

Preemption is not considered since the communication overhead required for each
preemption may be too large in a distributed processing environment. For simplicity, we have
- assumed homogeneous processors. If heterogeneous processors are used, all assignments must be

optimized so that the speed of the processors with respect to each job must be considered.

3.4 Notation

Following is a partial list of notations used throughout the rest of this dissertation.

Additional notation will be introduced as used.

k number of jobs present at the beginning (time ¢=0)
A arrival rate of jobs from a Poisson source
G fixed process graph
G’ random process graph
z constant processing time of a task

- 2’ random processing requirement of a task
P number of processors in the system ;
rL number of levels in a process graph
w width of a process graph »
N total number of tasks in a process graph -
S average system time required to complete a job '.
o concurrency measure

32

R T U P
S I o«

0 " - - - - - L] . - - - -
e T AT L ot et B
LIRS SR SRR I, "R IPA IR DT ST Y L, S A PR e W ¥




3.5 Cases Studied

Many performance objectives are available:

- minimize the completion time of the slowest job;
- minimize the number of processors required;

- minimize the average system time;

- minimize the processor idling time or maximize the processor utilization.

These objectives can be used in combination or by themselves. In our work, we have
chosen to use the minimization of the average system time (referred to in some literature as the
flow time) as the performance objective.

Of the sixteen cases shown in Figure 3.6, eight of them have a limited number of pro-
cessors (P < co). Therefore, these cases require scheduling of the tasks in each job. We defer
most of the scheduling problem to the references cited in Chapter 2 and concentrate on the
cases where we can assume that emough processors exist for all jobs and tasks that demand
them.

Two of the cases, }, G, z, P = 00 and )\, G, 2, P = oo, are very simple to analyze. All
the parameters are deterministic; therefore, all the measures can be easily calculated. For both
systems, we find the average system time, S (in fact, a constant for all jobs), by multiplying the

number of levels, r, by the task processing time: S =r z. Hence, 0 = % For the arrival sys-

tem, by Little’'s Result [LITT61], the average number of jobs in the system is k== A\ S== ) r z.
Since we have an M/D/oo system, we also know the distribution of the number of jobs in the
system, P;, to be

!k 5!' e->S

Py= 2=

In all cases in which it can be assumed that P == co and z is constant, the precedence
relationships given in G are of no consequence except to ascertain the number of levels. For the
constant service time cases, for every 2z units of service time, one level of the process graph will
be completed regardless of whether a node on the previous level has precedence over this node.
The assignment problem is also simplified by assigning all processors required to all tasks on the
same level of the process graph for z units of process time. Because we have enough processors
to keep any number of jobs active concurrently, the number of jobs is irrelevant. Any job,




P i ety hlni At B Ahe Sasht Andt SheseL i ander- S Sunih g i S dh I T U R A JMAS S S ea i e bl tl o Jnesat A ndn

either k jobs at time ¢ = 0 or those arriving from a Poisson source, will spent r 2 units of time
in the system before departing. Therefore, we need to study just one job in order to find all the

system parameters.

In Chapter 4 we study the cases i) k G,z P= oo, ii) k G, 2, P < o0, iii)
k, G, 2, P< oo and iv) A\, G, 2z, P= oo. In Chapter 5 we concentrate on random process
graphs for cases i) k, G°, z, P=00, ii) k, G, 2" P=00, and iii) &, G’, 7, P<co. In Chapter 6 we
study the communication overhead with the case k, G, z*, P<oo.

In the taxonomy tree of Figure 3.6, the section associated with a particular case is
shown on the bottom. The other cases are left for future research.




CHAPTER 4
Fixed Process Graphs

4.1 Introduction

In this chapter, we explore cases where the process graph is fixed (i.e., given). The ser-
vice time for each task is random in Section 4.2, 4.3 and 4.4 while in Section 4.5 we assume it is
constant. The number of processors is assumed to be infinite; so the results obtained are
independent of the number of jobs. In Section 4.2.1 we first obtain the average system time for
the case of exponentially distributed service time for each task. The process graph is first con-
verted into a Markov chain; the equilibrium state probabilities of each state in the chain are
then obtained. From the average system time we find the concurrency measure for a specific
process graph. We use bounds on the average system time to get an approximation of the con-
currency measure in those cases where the exacc concurrency measure becomes difficult. Section
4.2.2 describes how the bounds are obtained. In Section 4.3 we consider the arrivals of jobs to
the system instead of a fixed number of jobs. In Section 4.4 we consider a finite number of pro-
cessors, and using Stochastic Petri Net theory and the motion of power, we find the optimum
number of processors that should be assigned to each job. Section 4.5 deals with the assignment
of tasks to processors. We look at the ratio of the average system time when the best schedul-
ing algorithm is used versus that when the worst scheduling algorithm is used.

With either the exact concurrency measure or bounds on the concurrency measure, we

have characterized a process graph. The average execution time, the average width and the
speed-up that is possible for this process graph can all be derived from the concurrency measure.

4.2 Fixed Number of Jobs (k, G, z°, P = o)

4.2.1 The Exact Average System Time

L A

AU

¥



In order to find the average system time of a process graph, we must be able to compute

. the average concurrency of the tasks. Towsley [TOWS78] introduced a model of parallel pro-
\ ~ cessing for CPU and I/O overlapping. In this model, after a CPU task terminates (say task
::E: CPU,), it initiates another CPU task along with an I/O task (i.e., CPU, and 1/O) ~ see Figure
4.1a3.

&
: ) (e

Figure 4.1a CPU and 1/Q Overlap

R ~—
- If we now represent this system behavior by a Markov state transition diagram (Figure 4.1b), a
: - job may be in any of four states:
1) CPU, the CPU is executing task CPU,.
2) CPU, the CPU is executing task CPU, alone.
3)1/0 the I/O task is executing.
3 4) CPUr1/O the CPU is executing task CPU, in parallel with the execution of the I/O
task. ' '
The time spent in each state is selected from an exponential distribution with the mean service
time for CPU,, CPU,, and I/O equal to 711-' -”l—, and -:‘-, respectively.
1 M2
X g




Figure 4.1b Markovian State Transition Diagram

In this section, we use Towsley's approach in our concurrency problem by converting
process graphs into Markovian state transition diagrams. Two methods of obtaining the average
system time are then discussed.

4.2.1.1 Converting the Process Graph into a Markovian State Transition Diagram '.:'

A Markovian state transition diagram, M(G), is generated for process graph G where
each state in the Markov chain represents a specific set of tasks in G that can be executed in 1

parallel. Let C, represent a state in the Markov state transition diagram where a is the set of H
tasks that are executed concurrently. Also, let |a| represent the number of tasks in the set a. .

The chain starts with state C; where [ is the initial task in G. For each state C, in the ,
chain, it will go to |a| other states, each branch corresponding to the termination of one of the ~
tasks in a. The state C. at the end of one of these branches has the set of active tasks {a' }, ]
where o' includes the tasks in a minus the completed task plus the activation of several other :]
tasks if any, due to the termination of this task. The exact algorithm is given in Algorithm ::

37

PR
»
LI

O
------




CPM (i.e.,, Convert Process graph to Markov chain) in Figure 4.2, where the procedure for
obtaining the Markov Chain from a process graph is described. Figures 4.3a and 4.3b are exam-
ples of this algorithm.

K
L
ALGORITHM CPM £
-~
- L For the initial task i, we create an initial state with one active task i.
pj_f__‘:_ Mark this state 'unlabeled.’
':' 2. Select one of the unlabeled states C,, and mark it 'labeled.’
e Suppose there are z active tasks, ¢;, ¢, - - - , ¢, in this state C,.
For each ¢, create a branch with the branch label of ¢,;
p - ' this label corresponds to the termination of task ¢,
- If we traverse back from state C, to the initial tasks,
; the tasks on the branches of this path form the set of completed tasks.
a By adding ¢, to this set, we can check the process graph for new tasks, if any,
- which become active; call this set 5,
?;_ The branch with label ¢, goes into state C . where
W o=w- ¢.+{ﬂ.}-
~ If C; does not exist, we create this state and mark it 'unlabeled.’
3. If any state is not marked 'labeled,’ go to step 2.
4. Create a branch from the terminating state to the initial state;
stop.
Figure 4.2 Algorithm CPM
- We find that there are as many levels in M{G) as there are tasks in the process graph G. This *
also equals the number of states visited in M{G) before a job cycles back to the first state C,in -

the Markovian state transition diagram.

.-
.—




q
- 2
. «
‘ -3
e
- [
= Figure 4.3a Process Graph ::
4.2.1.2 The Average System Time '
For a state C,, the rate of leaving this state is u,+us+ - -4+u|°|,_where 1 is the mean N
. ' N
- of the exponential service time of task ica. Therefore, the mean time spent in this state is R
1
(-
B
1]
Let us now assume that p, == u for all tasks i. Therefore, the mean time a job stays in state C,
) is L
- lap ;

v
s

)
-
- ’
- (S
e A
- -
- .
- !
oo i
- ‘
-z S
-t -
O R
"% .
SR
ORI .
Rl 39
o .
S
WO ‘e
b s




€
]
[
=
8
(a]
=
.2
et
‘®
a
o
[
)
s
]
b
n
)
.8
>
e
-t
[
H]
=
£
]
-«
e
3
.20
8




MG T i Eat e Conta R MRt AaEV e e Searie e Ibeuci s b e s S S AcRAS st Sube S e A b d e i e e G e AR 4 A

Due to the memoryless property of the exponential service time distribution, each task
in C, has the same mean service time regardless of whether a specific task had been processed in
another state Ca' . Hence,

Prob[taak i completes first | iea] = Fl'T

for all iea.

Starting from the initial state, there are many paths a job can traverse before reaching
the terminating state in a Markovian state transition diagram. Since we know the probability
of traversing each branch, the probability that a specific path has been taken can be calculated.
Suppose the path taken proceeds through the following states:

Cay, C.

ay oo 'C

ay*

The probability of taking this path is H o '|

Suppose there are r different paths from the initial state to the terminating state in the
Markov state transition diagram. If it takes an average of T, units of time to complete path
with probability p; this path is chosen, then

5(P) = g T.p (4.1)

The total number of paths from the initial state to the terminating state is enumerable.
By summing the product of the total average time spent in each state in a path and the proba-
bility of taking this path, we are then able to find the average system time of the process graph
represented by this Markovian transition state diagram. '

Take the example shown in Figure 4.3b, the average time for path

*...Ca, Cbc, Coec, Coc, Cpr. Cr, Ce

including return to C, (i.e., a cycle) is

1 1.,1.1. 1 129
14—t == 1 LA
“[l+2+3+2+2+1+]-”6

f
AR
.’4
-9
=4
1
.

1111 1
2322 24
age path time and the probability of taking this path over all possible paths, we obtain an aver-

and the probability of taking this path is Summing over the product of aver-

PP W

e e e e

age system time of %—5.0556.

41

---------------------------
.......................
...........

RO TS CEAARRAR N

.........
.t .t
.........

. .
DIALIADAT IO




9 From a simulation ol this system, we obtain a value of 1 5.09 for the average system
B

time, a result which is in very close agreement with the predicted value.

. . . 4
From the above calculation, we see that the average system time is greater than 7

] which is the number of levels in the process graph (Figure 4.3a) multiplied by the average ser-
. vice time of a task. The reason for this difference is that task G must wait for the completion
of its 3 predecessor tasks (tasks D, E, and F) before it may start. Thus the time to process
nodes D, E, and F in parallel (even assuming that they begin to be processed at the same point

- in time) is greater than -‘1‘- since we must wiat for the slowest of the three to complete (and this

will exceed the average task time for each — see Equation 4.4 below). We are seeing the cost (in
increased system time) due to the dependencies among the paths from initial node to terminat-

ing node.

4.2.1.3 The Concurrency Measure

The concurrency measure can be calculated from the average system time as

=TS0

Substituting Equation (4.1) into the concurrency expression, we get,

Y T, B g
o]
N
M

g ==

We can find o by another method. We have transformed the process graph into a Mar-

p
kov state transition diagram. If, in addition, we have a branch going from the terminating state ]
back up to the initial state; we then have a discrete state continuous time ergodic Markov ]‘
chain. The equilibrium state probabilities can be solved by the balance equations, which equate w1
the rate into a state to the rate out of the same state. In addition, we need Y x, = 1 where r, \

1

is the equilibrium probability at state i. Even though there might be a liuge pumber of states in '-.-:

the Markov chain, due to the characteristics of process graphs, the balance equations will form a -

lower triangular matrix, and it is easy to express all the state equilibeium probabilities in terms -

of n,. Then, by using the'z 7, = 1 equation, we find x, which, in turn, gives us all the equili-
t

brium state probabilities. Figure 4.4 gives an example of the balance equations in matrix form

42




Setetes

for the process graph given in Figure 4.3b, assuming g, = u for all s.

(1 00000000000000 (m) [20m)
040000000000000f {m| |34 m
040000000000000( {xg| (247,
0045000000000000{ || (257
0042000000000000| |ng| |24 7
004 400000000000| || |34 7
000200000000000| |n, PEN
00000400000000| {7 2p 7
00000 p00000000] |7y | |24 mq

0000 2000000000| |m, TR
000000, 20000000 |my, 2unx
0000000000 000{ =, B My
00000000 pup0000 |m, B My,
0000000000000 |m, B Ty

0000000000004 puf |ms) | &)

Figure 4.4 Balance Equation

Let us denote the matrix multiplication in Figure 4.4 by
All=BIl

Aisa K-1 X K- 1 square matrix (where K is the number of states), I is a column vector of
(=12 --- ,K-1), Bis s row vector of the rate out of states 2,3, --- , K- 1. and
IT is a column vector of x,’s (i== 2,3, --- , K). A'p’in the i* row and j* column in matrix
A represents an edge with a label 4 from state j into state (i + 1) in Figure 4.3b. Therefore the
matrix product of the * row of A by IT results in the rate going into the state (i + 1). The i*
entry in B represents the number of edges leaving state (i + i) multiplied by s. Thus, multiply-
ing the i entry in B by the i* entry in IT results in the rate out of state (i + 1). Hence,
ANl=BIT equates the rate in and rate out of state ¢, for 2 < § < 16. For example, the 6%

row of A Il contains p x5 + u'x, which is the rate into state 7, and the 6" row of BIT contains
3 p 7, which is the rate out of state 7.

Once we have found the 7, we can proceed as follows to obtain the con&uriency meas-
ure.

AR
VR

JE ',",.',',.‘

-
S
4
“*
b
+




~ . T Ed —— " e o e
- A g S v
- LR DR AN A e b g o ee aa B R RO ‘-:]

N_1
S(P) 0 B i
i -]
g = = .
1) N T
[ -f‘
where o, is the number of active tasks in state k and Eopr, is the average number of tasks _:
t
being executed over the entire execution period. Hence, f
0= (4.2) B
Eok"t o
t iﬂ
This is the main result of this section. ’
From renewal theory, we also know that S(P) is the mean recurrence time. Thus,

S(P)= -;r-l— where 7, is the equilibrium probability of either the initial or the terminating

state. Hence,

1

o - B . |
N n N
]

A simple example is given next. Figure 4.5 is a process graph with its Markov chain

shown in Figure 4.6. The set of balance equations are

Prg == pux
By == 2uT,

BEy ™= pRy = px,

Zs:x.-l

The solution is

ﬂl’ﬂ‘-—

7

and




LA N i A e Padiin® oty Pl et St e S B et B S S hers st el dt Shaitt ats St Andir dd it St Aos Sase i dbgn Bon Ao B Tt DoAY

|
(9}

Figure 4.5 Process Graph

”2 == ’3 o= ﬂ‘ t
Hence,

‘i 8
akﬂ'. T e
bl 7
orog = —

There are two paths from state 1 to state 5, each with equal probability of being

chosen. The average path time for both paths is [1+%+l+l] % Hence,

71
w2 1
ST, E

u

which agrees with the ¢ calculated above.




L e ama oo g 2

Figure 4.6 Markov Chain

The small speedup (%- = 78}-) is due to the serial nature of the process graph in this

example. Only two of the four tasks may be processed in parallel and only for the duration of

t = min| , ,t;| where (,, i == 1, 2, is the random processing time of one of the tasks that can be
executed in parallel.

v e e ‘e " e Ty
sl

e v
s a
(4 .
ey

LIy

46

. el
PRSI

T 3
v S

.
)




4.2.2 Bounds on the Average System Time (k, G, z', P = o0 )

In Section 4.2.1, we found the exact concurrency measure (Equation 4.2) for a fixed pro-
cess graph with random task times. Although the algorithm used in obtaining o is not difficult
to carry out, it is cumbersome to either calculate S (P) by going through all the paths in the
Markovian state transition diagram or to solve for the equilibrium state probabilities from a set
of balance equations derived from the Markov chain. If the exact concurrency measure is not
required, we may use upper and lower bounds as substitute measurements for the concurrency;

they are usually much more easily obtained than the exact solution.

In order to find an upper bound, we "synchronize” the execution at each level by forcing
all the tasks in the next level to wait for the slowest task in the current level to complete before
they all start executing. We call the time between the synchronization of two neighboring levels
the "forced synchronization time” (FST). If we sum up the FST at each level of a process
graph, an upper bound for S (P) is obtained. For a lower bound, we just §nd the average time
required to execute the tasks in the longest path from the initial node to the terminating node.
Since this is the minimum time required for any job with this process graph, we have a lower
bound. In the following sections, we describe the exact procedures for ﬁndidg these bounds.

4.2.2.1 Blocking Time of Predecessor Tasks

In this section, we find the average time contributed by the "blocking nodes.” Blocking
nodes of a specific node i in the process graph are the nodes that have precedence relationships
into node i. Since a task cannot start execution until all of its predecessors have been com-
pleted, we would like to find the average time required for the completion of all its predecessors
in the previous level (assuming they all started at the same time).

Each node, 3, in G has several precedences entering it and several precedences exiting it.
During the processing of a task, out-degrees do not influence the completion time of this task,
but in-degrees do. Suppose there are n precedences entering this node; the task can't start exe-
cution until all n tasks are done. In other words, assuming that all these n tasks are begun at
the same time, the effective execution time of these n tasks with respect to node i is equivalent
to the max(¢y, Uy, ... , ¢,), where .t,, /=12, -+ - nis the random service time of task J. We find
the probability distribution function of this max as follows:

FRax(t) = Prob [completion time of n tosks < i

47

“r " ",’ .
T .
a' 2

1A Sl Sl S et Bl aad sk et ook ool SRRt s
. L ra T R TR R RLT . iy

L " -' _-' n' t.




CE e o _ g T P T T TN T RN ——p L e o e o ANttt aubd obgl i e oM /A GNAC o

= Prob [t < {|#Prob [t, < {*- - - #Prob |t, < {|

= [Ay)°

where F{¢) is the probability distribution function for the service time of one task. The equality
is due to the independence of service times of the tasks. From probability theorj', we derive the
expected time for finishing n tasks from

E | completion time of n tasks |
o
= [ -Fo, (z)] dt

= [ 1-;(:)’1 dt (4.3)

Since F{{)" < F{t), E [completion time of n tasks] > E [completion time of one task]. If the ser-
vice time is exponentially distributed with an average service time of 1/u, then Equation (4.3)
becomes

completion time of n tasks with
ezponentially distribuled service times

- f:[ 1-(1-#')'1 dt

1 &1
-727 (4.4)

lon+ @

Note that for n >> 1, Equation (4.4) is approximately (where ¢ is Euler's constant

= 57721... ) Equation (4.4) can also be obtained from the following equivalent queueing system:

A service center with n servers, each server having an exponential service time distribu-
tion with mean of 1/u;

No waiting room allowed in the system and servers starting execution when there are n




ooy

MACEACS AR B e Tl Y Sl Al L AN A AV A A At SR AR o sl e oAl Sl agilr el A ot P\ I i Sede 1 4

customers in the system;

Once the servers start execution, no new arrivals allowed to replace the departed custo-

mers.

The time, S, to complete all n customers measured from the start of execution is

1 1

S= — + ——
np  (n-1)u

R |
B

1 &1
-u,.z.lj

The equivalence can be shown as follows:
The n customers in the queueing system are equivalent to the n blocking nodes;

One server becomes inactive after each customer departs from the queueing system and
this is the same as the completion of one blocking task;

The service time of each customer is exponentially distributed with a mean service time

of %, and the time required to complete a blocking task is also exponentially distri-

buted with the same mean service time of -:T

Hence, the average time required to empty this n-server queueing system is the same as the
average time needed to complete the n blocking tasks if all of them start execution at the same
time.

From equation (4.4), we note that without the blocking eflect, each task of a process

graph requires an average service time of 71‘- However, with the blocking effect, the average
time to complete a task becomes approximately ln;-'l where n is the number of tasks blocking

this task. Thus o = -s—(nl)- - -!'-'"—" giving a speedup of ﬁ; this falls short of the maximum

possible speedup which is equal to n. The reason for this poor speedup is clearly the blocking

effect.

Since we know the in-degrees of each node in the process graph, the average time
required to wait for the completion of all the precedence tasks for s specific task, i, can be cal-
culated from Equation (4.4).




e aaac e - o —p— - - —— s - - - -
. . . LT . BN P Ty T oy Y T Y Y V¥ U W~ v~ v— v v . -

4.2.2.2 Bounds for Structured Process Graphs

We will first study "structured process graphs,” which are defined as having the follow-

ing properties:

1. All sons of a node, i, must merge back into one single node, j, before reaching the ter-

minating node, and

2. only node ¢ can have a direct precedence relationship into each son of node i no other
nodes may have direct precedence relationships into soas of node i.

With the above properties, each son may be replaced with a set of tasks with the same proper-
ties. A structured program is a good analogy of this process graph. In a program, which must
be entered at one specific point and exited at another, several parallel blocks of code may be
executed simultaneously, but each block must be entered and exited from the specific points.
Property 2 above states that no 'GOTO’' statements may direct the execution out of or into a
block of code. Figure 4.7a) shows a structured process graph, while the edge e in Figure 4.7b)
violates the property of a structured process graph.

Within each structured process graph, we can divide the tasks (other than the starting
and terminating nodes) into several mutually exclusive sets, where each set of podes, together
with the starting and terminating nodes, forms a structured sub-process graph. Property 2
prevents the precedences from a node in one set of tasks leading into a node in another set. We
call each set of the tasks a 'group-path,’ and we let m denote the number of group-paths in a
structured process graph. Algorithm GP below describes a method for finding all group-paths
for a given structured process graph.

This algorithm begins at the starting node of G and, by keeping track of the nodes
diverging out of each task, looks for nodes that are in a single group-path. If tasks eventually
merge back after diverging out of a single node, they are considered as one group-path. If tasks
do not merge back before the terminating node, they will be considered as separate group-paths.

By substituting other tasks for the starting and terminating nodes in Algorithm GP, we
can find the sub-group-paths within the process graph.

Nodes within the same group-path have the same PATHNUMBER in the algoritbm

below: -
"

...1

'.‘ﬁ

Algorithm GP: .3
T,'i

-

)

50 =

5

.
A

DA
. )
A A cdatn e




....................

IO

a) b)

o Figure 4.7 a) A structured process graph b} A non-structured process graph

_ STEPO  Mark all nodes 'NEW.’
PATHNUMBER « 1
PATH(v) « 0 for ail nodes v
Rt STACK « ‘empty’

-:'.::' STORAGE « 'empty’

£5 -
..t— " q

L 9
a

.:~ $1 "
S &
"oy .-. r
a

=

R




v ~ the starting node of G.

STEP1 Mark v'OLD.’

Store the sons of von the STACK.

STEP2 Select a task from the top of STACK.
Call this task v.

If STACK is empty, STOP.

STEP3 If vis 'NEW".
Put vin STORAGE.
Mark it 'OLD.’
Put all sons of v on STACK.

GO TO STEPS.

STEP4 If vis 'OLD.’
PATH(w) «~ PATH(v) for all nodes w in STORAGE
STORAGE « 'empty’

GO TO STEP2.

STEPS If v is the terminating node,

mark it 'NEW’ again (since the terminating node
is not considered to be in any one
particular group-path)

PATH(w) ~ PATHNUMBER for all nodes w in STORAGE
STORAGE « 'empty’
PATHNUMBER «~ PATHNUMBER + 1.

STEP6 GO TO STEP2.

=

I -
ot et
L
RN
NPT

SRR A
Latatala’a s L

Lol ST W N A
4 '.":'r':'-"‘

LA
.t
oSS,
L




rt_ Cladl el Anl Safh Andfnd Nall Seud S Sl Red M ned A Seal Sedme. due S S g G Sl b A gl S Mt Magh 0 I s Jenthd - Y e B e Yiir tiie iy AAuriiat-Sune B et Alarth et Sl

For ma==1, we know that there does not exist any individual path that is not coupled
with some other part of the G. Instead, many precedence relationships exist between two neigh-
boring levels. Because of this, the line of active tasks in G is roughly the same as the levels of
G since blocking prevents any tasks from becoming active if they are several levels ahead of the
active tasks.

From this analysis, we can immediately find an upper bound to the average system time
of G. If we force the execution to complete one level of G at a time, no tasks in the following
level are allowed to start, even if there are no tasks on the current level to block this task. The
average service time for each level is the average time required to process the slowest task, i.e.,

the task with the [argest number of blocking nodes from the previous level. We introduce a new
parameter d,;m.,, Which gives the largest in-degree per task for all tasks on level i of G. From
our definition of the process graph, we have d,,, =0 and dyp, =1 for all G.

R 'TEW | )
R . . e e

‘ R . P
Loet e .

Theorem 4.1
Given a process graph, G, which has one group path (mm=1), r levels and
{deax | =1,2,3 - - - r}, Syp, an upper bound for the average system time of G, is equal to the

sum of the average times required to process the node with the largest in-degree at each level.

| average time required to process
Sus & node with in-degree of dpuy

£

1 <
Y

1
j

1um] 1

If dax = O, the average processing time is defined to be the average service time of one task.
(The sum on j can be approximated by In d, o, when d, e >> 1).

Proof:

dumax is the largest in-degree for level § of G. If we sum the average times required to process
tasks ¢, for ==1,2, - - - ,r and the in-degree of ¢, is d, n,,, the resulting average time equals that
of a process graph with a path, p, from the starting to the terminating nodes, where each node
on this path at i** level has an in-degree equal to dyy,. If any one of the {dp,y } is not on the
same path, we must show that the resuiting average system time is no greater than SU,

Suppose the maximum in-degree node on level j of G is on path p' rather than path p
(see Figure 4.8). Let i, denote the node in the j* level for path p, i, the node in the j+1% level
for path p and i3 the node in the 5™ level for path p' . Since the number of blocking nodes for
node i, (that is d, ), is less thaa or equal to the number of blocking nodes for node i, (that is d,),

the average time required to complete node i, is smaller than or equal to the average time




P—— M et i S e e SatenrShiCiiee - B2 fac R . T ey~ _

PATH P o

il (G,)
Figure 4.8 Maximum In-degree Nodes

required to complete node i

—l-il<lzhl for d d-:d
“-l’.-“- s = b

Therefore, the average time to complete path p with node i; in the j* level instead of node i, is
smaller than or equal to Syg Similarly, if the nodes t’,‘, ‘w “+c ,and i on levels

Ju j2n * -+ ,and j, of path p are not the maximum in-degree nodes, then
”l-l- '-“l-l'-lr

because d,, < d;,m fori=m1,2, - ,a.
t

Hence, Sy p is an upper bound for the average system time of G.

A simple lower bound on the average system time is just the average time required by a
task multiplied by the number of levels.

Theorem .2
A lower bound of the average system time of a process graph G, given r levels, is the average
service time of one task multiplied by r.




............

Proof:
Since each level is defined as having at least one task in it, the minimum time required to pro-
cess one level is the service time of one task. For r levels, the minimum average system time
cannot be lower than the average service time of one task multiplied by r.

The upper and lower bounds obtained in the above two theorems are for different pro-
cess graphs with specific sets of {dasVi}; however, each set of {d,g/Vi} can represent a
number of different process graphs. Indeed, if we do not limit the number of tasks per process
graph, there could be an infinite number of process graphs generated from each {dp.,{Vi}. In
the proofs of both theorems, the number of tasks and the structure of the task graphs were not
used. In other words, provided the same sets of {d.p,|Vi} in both theorems, we have a class of
process graphs with the same upper and lower bounds.

For a structured process graph with mme1 group-path, the actual progress of active
tasks sometimes closely follows the physical levels of the process graph. This is caused by the
precedence relationships between adjacent levels (which forced the synchronization at each
level). Hence, the average system time is often close to the upper bound. This fact has also
been verified by simulation. For m>1 group-paths, since there are no precedence relationships
between the group-paths, the line of active tasks progresses at a different rate for each group-
path, depending on the random service time requirement of each task.

If a process graph has more than one group-path, the method described above for
obtaining bounds for m==1 must be improved to show the influence of the number of group-
paths. To classify a general structured process graph, we require the maximum in-degrees for
each level of all group-paths: { {du|Vi}, {dJVi}, ... , {d.u]¥i} }. The order of maximum in-
degrees per level in {d,5|V/i} for m==1 does not influence the bounds since any permutation will
produce a process graph with a similar bound. By the same argument, the order of the sets of
the maximum in-degrees for each group-path does not influence the bouixds. . "f:

As has been discussed in the case of m == 1, the average system time is usually close to
the upper bound; therefore, we will use the forced synchronization per level to approzimate the
average process time required for each group-path. For a group-path j and level § with max- 3
imum in-degree node having a value of d,, the probability distribution function for the service

-3
time of this level is [ﬂt)]"’, and the probability density function is 3
)




10 = 4 (Aot 220 (8.5)

To obtain the approximate average system time for the muiti-path process graph, we can reduce
each group-path into one 'super-node.’ The probability density and probability distribution
functions of the service time for each of the super-nodes j are

) =1NRL(NO - © frY) (4.6)

where @ represents the convolution operator, and

Fft) = _j:: (1) dr ‘ (4.7)

respectively, where each £,{¢) is a probability density function represented by Equation :i.5).

Looking at the terminating node, it has m 'super-nodes’ "blocking” it. This is the exact
analogy of Equation (4.3) with F(¢) replaced by the Fi({) of Equation (4.7):

the average time required to process o
node with in-degrees of m group-path

= [ ” [1 - ,]ii‘,(t)] dt ' : (4.8)

The convolution in Equation (4.4) is a tedious task. However, according to the central
limit theorem |[PAPOG65|, as we add up a large number of independent random variables, the
probability density function of the resulting sum is close to a normal density function, with the
average of the sum equal to the sum of each level's mean process time and the variance of the
sum equal to the sum of the variances of each level. We assume that the service time of the
tasks between the levels are independent of each other. For each group path, i, we approximate
the probability density function of its processing time by the normal density function with mean
a, and variance b, where g, is the sum of the average times needed if the forced synchronization
at each level in the group path is used and b, is the sum of the corresponding variances of the
average processing times at each level.

o

e s e e T
y oo,

Iow e e e,

® a9 .
a'ar e o &y

-
aal

R L
PRPRICa

’, ."-‘I g -




------------------
....................

Using this approximation, Equations (4.6) and (4.7) become

- IO (49)
and
-~ t 1 - (i.:';)z’,z
F(t)=~ L»Vz-,,?" dz (4.10)

respectively. Substituting F(t) into Equation (4.8), we may then calculate the upper bound,
S{H, of the average system time (Equation (4.8)) required to complete a process graph with m
group-paths as

o m ¢ 1 -(‘T‘)z/z
%={ l-'l;ll.};’mc ! d dz

4.2.2.3 Bounds for Non-structured Process Graphs

For a non-structured process graph, it is harder to obtain an improved expression for
the average system time. Although the lower bound expression on the average system time is
still the same as that of the structured process graph, we have been unable to find an upper
bound; this is due to the complicated coupling of the tasks, which makes it almost impossible to
find group paths.

4.2.2.4 Tightness of the Bounds (m = 1) -]

The upper bound is obtained by summing the FST at each level in the process graph.
For a given number of tasks, N, and number of levels, r, we know the lower bound to be -}‘- r.

By obtaining the upper bound on the worst arrangement with N and r, we know apﬁroximately o
how tight the bounds are. Since we distribute one node each for the initial and terminating =9
tasks and N - 2 nodes among the remaining r — 2 levels and assume that precedence relation-
ships exist between all nodes of the adjacent levels (this being a process graph with any two o
adjacent levels forming a complete bipartite graph), we are looking for:




Suyp = max Syp ,
. -2 "
= = max - [24—2 25—1-]
L 1 ol wmy !
ﬂ ~2
-~ subject to Y n, = N-2. 3
~-' Fl (
o ’
ny . . -2 . N-2 . )
. This maximum occurs when n, = — forallj=2234, --- r-2. It e not an .
integer, then n = N2 o j=2,3 ---,z where z= remainder of N2 and =
4 r-2 r-2

n, == \ 7:22“ for j = z+1, 2+2, - , r-2. The ratio of the maximum upper bound Syyp to

the lower bound gives us a measure of the tightness of the bounds.

For example, for N = 6, r == 4,

Suvs = %[2 + (:-2)§l -t—]

=15 &
- 14
1

Sig= — 4 .

- L8 B -
o Swuus e g -~
. Thus, s = 1.25, which indicates that the upper and lower bounds are very close to each -
A LB .
. other, but for a larger process graph such as N = 102, r = 22, .

] .
2 + 20); -l- 1
Suus i B
.~‘. S - - l - - 2_17 , :
LB 29— oL

s -

the bounds are further apart. . | =

Of course, we are comparing the maximum upper bound possible, but as N becomes j:‘_:

large, the ratio of the upper to lower bounds also gets larger. The exact upper bound depends -~
on the number of levels and the number of precedence relationships in & given process graph. - '.

~




af Ausrateency
. Lt T
Al I PR . .

| S DT

*':T;‘

Where, between the two bounds, does the exact average system time lie? This depends
on how tightly the tasks are coupled to each other in the process graph. The more tightly they
are coupled, the closer the average system time is to the upper bound, and vice versa. Figure

4.9 shows a process grapb with average system time close to the upper bound.

4.3 Arrivals of Jobs (), G, 2, P = o0 )

In the previous section (Sections 4.2), we obtained the average system time and bounds
on the average system time of a job. Since we have assumed that there is an infinite number of
processors, all jobs start execution at time zero. In this section, we assume that the jobs arrive
from a Poisson source. As soon as a job arrives at the system, it starts execution (again this is
due to P = c0). Thus, the results obtained in Section 4.2 can also be applied to this case. In

addition, from Little's result, we have, on the average, k == ) S (P) jobs in the system, where
S{P) is the average system time obtained in Section 4.2.1.2, and we have the bounds on the

average system time as

and

kyp= X\ S;p

where Syp and Sy g are the bounds obtained in Section 4.2.2.

4.4 Stochastlc Petrl Nets (£, G, z°, P < o)

In this section, we limit the number of processors to P < co, and the Stochastic Petri
Net (SPN) [MOLLS81] model is used to find the average utilization of these P processors given k
jobs, a fixed process graph and task service times which are exponentially distributed. A process
graph can easily be transformed into a Petri Net, as was shown in Section 2.3.1. To the result-
ing Petri Net we add a "place” called "Processor Available,” with P tokens in it, and another
"place” called "Unexecuted Jobs,” with k tokens in it. Initially, all other places have no tokens
in them. We add an edge from the "Processor Available” place to each transition requiring a
processor and another edge from each transition Bnished using the processor to the "Processor
Available’ place. Figure 4,10 gives an example of how we transform a process graph into such a
Petri Net.

NCEE ..." L A ) R AP '-'.~-‘ .‘A"' '-..' e
LR I A SN N T S PR M AT "
i_'_..' PP A I S P PSR, Qe




1

_-'0

1

SLB = 300
Sus = 494.95
S= 4729

-}_f Figyre 4.9

Process Graph with Average System Time Close to the Upper Bound

- - mal o e wy ;‘I"“q"vj ‘Sl .'...-‘."3'--"_" i ald R T e
{3 BRI e i i tesite radiaiaad it D A N RS RN -

|
.l
P P IR I L__.._J

TR

ey
1, P .
PR ON

»
S

R

.‘, SR
[N S i)

-y

-~

S
Aelml

e Ty

e A At



- v St My o L Au e P inin Sde g2 I i et neie SR Sbe Sl WAL Jrh Al Jende

»!

i
(@)

) Figure 4.10a Process Graph

..
Py

(
NN P

Al

61

e s v
[N

'y

A




PROCESSORS
UNEXECUTE S
CUTED Jos AVAILABLE
k tokens P tokens o5
(x jobs) (P processors) \ -*'*
TASK A
INITIALIZATION
TASK A
EXECUTION
TASK A . A

COMPLETION

TASK B TASK C
READY READY

TASK B TASK C lr
INITIALIZATION INITIALIZATION
TASK B TASK C Y
-EXECUTION EXECUTION
TASK 8 TASK C
COMPLETION COMPLETION
t‘
TASK O .
READY -
v
TASK D l ]
INITIALIZATION . . -]
TASK D . 4
EXECUTION i e
TASK C

COMPLETION

Figure 10b PETRI NET




p.
p.
L -
-

iy

When all tokens in the "Unexecuted Jobs™ place have been used up, and no other
tokens remain in any place except the 'Processor Available’ place, the Petri Net said to have
reached the recurrent state. From the analysis provided by the Stochastic Petri Net, we can
find the average number of tokens, /, in the "Processor Available” place, whick also indicates
the average number of idling processors. Hence, the average utilization of the P processors is

P"l-'F

Since P is limited, we do have a scheduling problem; however, 3 SPN does not allow the
assignment of a specific task to a p'rocessor. The assignment depends on which transition requir-
ing a processor fires next. Thus, the performance obtained with a SPN analysis lies between the
best and worst assignment results. '

If, instead the value of P is the design parameter, we may use the defipition of power
[KLEI79] to find the optimal number of processors for a specific process graph and number of
jobs. Power is defined to be the utilization of the processors divided by the normalized average
system time. A SPN provides the values of both of these variables for a specific value of P. We
can therefore plot power versus the number of processors to find that number P at which the
power will be maximized.

4.5 Task Assignment (£, G, 2, P<o0)

In this section, we find bounds on the average system time by developing algorithms
that will give the best and worst scheduling in terms of the average system time.

If the ratio of these two bounds is nbt large, perhaps random scheduling of the tasks to
the processors could then be sllowed. Random assignment has the advantage of no overhead
being needed to schedule tasks. Whenever a ‘processor is available, it will just grab any task
that is ready to be executed. We know the performance of the system must fall between the
two bounds.

62

.
S NN N

Tyl alwrYTYswyTw



P e ngiat B S -Bir i Tl S A A AR N

First, we assume the shape of the process graph to be bounded by a diamond as in Fig-
ure 4.11.

i

P
. 7m

Figure 4.11 Diamond-shaped Process Graph

This type of process graph can be characterized by two parameters: L and m, where L is the

number of levels in the process graph and m is the slope of the diamond enveloping the boun-
dary tasks. We assume a continyum of tasks within the diamond.

Since the service time of tasks are constant, we normalize the service time of each task
to one unit of time,

From |[COFF76], we know that the assignment which minimizes the average system 1
time is the shortest expected remaining process'ing time fSrst assignment. This is the Depth-first .
Assignment Algorithm, where all available processors will be 'migned to-the tasks in » job that
is closest to being completed. In other words, we are trying to complete jobs as fast as possible. -




I RC AR AR AC A A Sl Al A Ak G A e N Al Ml Dot A Sl Sl Sl Aa i Al Sl ik S S ea e it S et e s

On the other hand, if we want to maximize the utilization of the processors, then the
longest expected remaining time first assignment is used. This is the Breadth-first Assignment
Algorithm, where all available processors are assigned to the jobs that have the least amount of
processing to be done. In this assignment, we are trying to process all jobs at the same time, so
that all the jobs complete at times very close to each other. We are interested in finding the

ratio of the average system time obtained from these two assignments,
S|
Y= —.

S

where S, is the average system time using Breadth-first Assignment and S, is the average system
time using Depth-first Assignment.

If we assume all jobs depart at the same instant as the last job when calculating S,,

then
Lr n?
m2_m'k
2 2 )

S. - 2'1 +

where r, = -}-2,% and P< -%E. Simplifying the above expression, we get

Pm kL2
S=Zr * 2Pm

If we provide 3 maximum number of processors, P == -'-I;.- k, then

[Lq
m 2
S, = 5 E + kL
2l—-L q m
m
L L
-_2.+-2- L

that is, it takes L units of service time to complete all k jobs. This is what we expect, since
each job has % processors, which is equivalent to P == co. Thus, each job takes L units of

time to complete and all £ jobs run in paraliel.

- {

RPN L,,.','-
.-1)‘1 s lanas sl




It we let P = 1, then
: - m 5
Si=gpths;
L L2 ) .
g Since there are m tasks in each job, it takes k[ﬂ' - l] + i units of time to complete the i**

job. Thus, the average system time for these k jobs is

Ll L3 .
s '§lk m—l]i-l
= ¥

é['zl‘_:n'"l] + 2l

k
Lz
=tam-zt!

The difference between S and S, is due to the assumption in calculating S, that all jobs depart
at the same instant as the last job; this assumption is pessimistic, as we see, and s0 it may be
made in obtaining our bound. Thus, for £ 22,85>8S8

For example, if welet Pam 1, mam 1, k == 10, and L = 5, then

m kL? 1
S=grtTa 1By
and
L2 &
S-kﬁ-?+l-l2l

As predicted, S < S,. By changing the value of P to 50 while keeping all other parameters in
the above example the same, we get

80 10 25
=m0 e -0

which is exactly the average system time, S, using the Breadth-first Assignment.

As for S;, the least average system time can be obtained by considering the process
graph as a rectangular shape since, for this shape of process graph, the utilization of the proces-

: )
sors is at the maximum. The total number of tasks in a process graph 'is 2"—".; 80, the width

(average number of tasks per level) of the rectangular process graph is -2% Thus, the largest

'

-
50,0, 1

LI I‘ Py
3 2y'e




CRA RIS D et AUt S I e et A A A A St i e - S W T FTRTEN
Al ARt st Bt St B b B j

number of jobs that can be processed at the same time by P processors is

A
>

£
L
2m

k=

k

'3°|l~|"u ?lhl-u
Y
n-

Thus,

$h o+ G- L L0

==l

>'-j-

b

k ‘ d
- k .
» .

=

p -

b,

where j = i, - In the numerator, the summation term represents that

Min| k,

L
L/2mj
every L units of time, &° jobs are completed; the second term in the numerator represents the
time required, (L 5] + 1) L, by the last (5~ | 7]) &’ jobs. Hence,

LAIAD gy isean

J

- P . k kL . .
_!:: If we assume Ijam < k, then j P ™ Pm It § is an integer, then
. L/2m

s,-%l,,md

A2 Pm
- g b 2Pm 2k
- S 1,
L 2

i, Pm
2Pm = 2%kL
kL 1
4Pm + 2

Otherwise,




K Pm
v - 2Pm 2k
LG 4 pytd+ne
J
If we assume P > kthenj=s1,and S;= L, or
L/2m = ' '
2
| Pm
V- 2Pm 2k
L
= k_l‘ + &.‘.
2Pm 2%l

For example, Figure 4.12 shows ¢ versus P for L = 10, t == 5 and' m = 1, and Figure
4.13 shows ¢ versus P for [, = 10, k= 5 and m == 2. We observed, in both Figures 4.12 and
4.13, that the value of ¥, after falling initially, will rise slightly before monotonically decreasing
again. The cause of this rise is from the assumption of a rectangular process graph in calculat-
ing Sq. Since the rectangular process graphs have a constant width of L/2m, when the value of
P reaches a multiple of L/2m, an additional job can depart at every L time step. This fact
decreases the value of S, faster than the value of S, is decreasing whenever the value of P is

k

close to a multiple of L/2m. After P > ———, S == L, then this effect disappears.

Lf2m

The next theorem gives the asymptotic behavior of ¥ as P and £ become large.

Theorem 4.8
As k and P become large, ¥y < 2.

Proof:
I
Case 1 —L-m- <k
S,
Y = ?‘-

67




I S R R B S A R ai g e e

RS Rt e S AR A A S et A il g Al e ol ea*h A e o S T W I N I W e W

20 T T 1 | T L | T L =
1.9 . j

1.8+ L= 10.k~5. m=1 -

after this point Sg= L= 10

/

P

Figure 4.12 ¢ versus P for L == 10, k == § and m == 1

68

- - A A N A RIS )

ot . - o 3 R ~a ..

* - RO AP S SN

* IS B o

. L et . . A I LN

DI I - Pt RSN P R B IR AN R T S AP N

. LA N A e R A S BT R T N N e A A St - - .
LN I A AP A I W R A AT I PPN RSy A el a™ A




|l
©

1.8

L= 10.k= 5. m= 2

Figure 4.13 ¢ versus P for L s= 10, k= 5 20d m = 2

69

s ©»

-3

N RIS O

"_;I TTe s .

’

" e
s 004

.
»
s A




A Pm
- 2Pm 2%
Phasd y
2

kK
P 2Pm
Li2m

L} Pm
2Pm + ET)
kL2 L

4Pm 2

where j =

or

Y =

Pm

o "L
kL? L
4Pm + ]

-2

Since we have the assumption of P < kor Pm < L < L; therefore, Pm _ L<o.

Li2m 2k 4 2k
Thus, v < 2.

P_ s

Case I L/Tn. Pd

Pm kL 2Pm
2L + . fwelet 2=

For this case, we know S; == L. Therefore, y = 2Pm Lk’

then

1,1
vmliel | (4.11)

Plotting ¥ versus 2, we obtain Figure 4.14.

If we take the derivative of ¥ with respect to z (approximating z by a continuous variable) and
set the result to zero, we can fnd the z at which ¢ is at the minimum:

=0

4y _1_1
4 2
The minimum occurs at z== 2 Thus, since z=2 is an integer, we have also found the

minimum of ¥ as the integer. As long as zw= -2{-?- <8 theapy<2,0r PL -‘%k- - 4&%.

In other words, as long as the number of processors is fewer than four times the number of jobs
multiplied by the widest part of the process graph (-""-.-), then ¥ < 2. Usually, we use only, at

L

L L oPm _ Fmom
most, k[—l processors. So, if we let P < k—, then z == B < = 2. Also, since
m m Lt = Lk

70

.- e e e, e .
s e
LI

i



—_ o |
z 2 .. 7257%
. -¢'_ ii 28
r:," M § 4
' o _ e . 11—
. —_ -=9 o __ —1 20
1 17 _* =" -—
1 157 ¢
. e U S NN WS I— i W w—
1 2 3 4 5 6 7 8 9 10
x
Figure 4.14 ¢ versus z
kL
—_—Lm
kL 2Pm 2m . .
we have assumed P 2> T z == i > T > 1. Again, we see from Figure 4.14 Ftbat

betwecn z»= 1 and zm 2, y € l—:—.

From Case II of the proof in Theorem 4.3, we know that, for L_/’;’? 2k
Y = _Pﬂ_*_l&_ Therefore, in Figures 4.12 and 4.13, the values of y for P z—k-l'- are defined
2kL  2Pm 2m

by the same expression as Equation 4.11. If we extend this cutve backward for smaller values of
P until ¢ = 2, we obtain an easier bound on ¢. This is shown in Figure 4.15. The values of
P’ at which ¥ = 2 intercept this curve can be calculated from the following expression:

P'm kL

vVe=l= ot

or

P"m ] EL
=i "Wty =0

7




.
.
te,” v
h‘
.
.

»

) -'v\ﬂ
i_- *
I.-

»

e e T T T e e T T e e T T e e
..... P P T :
- - ~ e e e N e e e e e e T L L e s e e
* T B e e e e e e e e e T e ,‘
2t ala o~ . « % LI . DAY - [ R B PR LS A S : ) ) e e e
- P bl il a * el snbuntutad ek it aca a ‘*. R
PRI et L SPY I, NP LI S aa atvaTe At NN
" a P . -

..................

L= 10, k=5, m= 1

R

LIS VY

N SR

5 10 15 20 25 30 40- 45

Figure 4.15 ¢ versus P

72

PN A

PRAPLLITINT P

R W PURNALAN |

.................
. s -
......
..........



Solving for P’ we get

P’ = 0268k
m
Therefore, for 1 < P< 0.268-‘7-"!:-, the upper bound omn ¢ is 2, and for
kL kL . .. Pm kL . ..
0.‘268-; <P<L - the upper bound on ¢ is the polynomial L + P This fact is given

in the next Corollary.

Corollary 4.4 The upper bound of the ratio ¢ is
kL

2 1< P<o2s8
VS\Pm K kL kL
Pm kL 2685~ < p< XL
2kL+2Pm 0268m‘P— m

Figure 4.16 shows a plot of ¥ versus P.

Thus, we see that the ratio of the average system time for the worst assignment to the
best assignment is given by Corollary 4.4. This ratio is quite small. Hence, if we do allow ran-
dom scheduling of the tasks to the processors, the resulting average system time will be bounded
relatively tightly by S, and §,. '

4.6 Discussion

In this chapter, we discussed two methods for obtaining the average system time and
the concurrency measure of a fixed process graph with randomly distributed service time of
tasks. These results apply to both a fixed number of jobs at time zero and an arrival of jobs
from a random source because the number of processors is assumed to be infinite. In the process
of inding the average system time, however, either an enumeration algorithm must be used or a
system of a large number of equations must be solved. Both metiods are time consuming when
the number of tasks in the process graph becomes large.

We can, however, use the upper and lower bounds on ine average system time as a rule
of thumb in approximating the concurrency measure. A relatively easy way to calculate both
bounds has been presented.

73



0,268 -ﬁ%- |
P

Figure 4.16 The Upper Bound for the Ratio ¥

74

s 1 DAL |

v
,

L
.

-l

edo

Py

A

1_%s"2

.
P
o« e v

W



A Stochastic Petri Net model was used to find the average utilization of processors for
the case of a fixed oumber of jobs, ixed process graph, random task service time and limited
anumber of processors.

Two scheduling algorithms were analyzed to find the ratio of the worst algorithm to the
best algorithm in terms of the average system time. We found this ratio to be less than two for
diamond-shaped process graphs.

PR At fdnea Sadu i B Al i Adi Al S A et W e WS




i.I'l
AN

CHAPTER §
Raandom Process Graphs

5.1 Introduction

In Chapter 4 we studied cases where the process graph was considered to be fixed.
Therefore, the analysis and the system parameters obtained are good for only one particular
process grapb. When we change to a diflerent process graph or try to predict the general system

bebavior of the other process graphs, the results from s single process graph are often not very
helpful.

In Sections 5.3 and 5.4, we obtain bounds on the average system time of a random pro-
cess graph, with N tasks and enough processors so that a processor will always be available any
time a task demands it. With these bounds on the average system time, we can find the bounds
on the speedup achievable when we use multiprocessors to process a fixed number of jobs. The
speedup is defined as the inverse of the concurrency measure and the concurrency measure is
still defined as the average system time using P processors divided by the average system time
using only one processor. In Sections 5.5 and 5.6 we will assume that the number of processors
is limited,

In our first model in Section 5.4, we will assume that the number of precedences is arbi-
trary; in our second model, this parameter is fixed to a constant. In the former case, only the
arrangement of the tasks in the process graph is studied.

In this chapter (except in Section 5.4.2), we assume that the N tasks do not include the
initial and the terminating tasks, and the number of precedence relationships, M, (if given) does
not include the precedence relationships between the initial task to the next level tasks and from
any task into the terminating task. The resulting upper and lower bounds are known to be two
average task service times smaller than the actual bounds. This change, while not aflecting any
of the results, does allow a clearer explanation without worrying about the two additional tasks
at the boundary.

76

a0t o
v Be Ce Y,

2 "0 s

-
N
»
-
.-
-
' -
.
“
«




v
]

- v -
PP BF I
N R —_— LY

In Section 5.2.1 we show that the number of arrangements of the tasks for a process
graph with a fixed number of tasks, N, is 2(¥?) and that the oumber of arrangements for a par-

N-1
ticular level, r, is l 1 l . From the construction algorithm described in Section 5.2.2, we show

that the number of arrangements for an N-task, r-level process graph forms a Pascal tree. Since
the number of arrangements is Gaussian distributed with respect to the number of levels in a
process graph as N becomes large (this is proved in Section 5.2.3), most of the arrangements
will have 2 number of levels which (percentage-wise) is close to the average level, namely

kLv;—l-l The Chernoff bound, introduced in Section 5.2.4, will be used for the probabilistic

argument in Sect.ipns 5.3 and 5.4.1, in which we obtain upper and lower bounds on the average

system time for a randomly selected process graph.

With the number of precedence relationships (edges) and the number of levels added as
additional parameters, we find tighter bounds in Section 5.4.2. The two upper bounds obtained
are compared in the Section 5.4.3.

In Section 5.5, the issue of trading off between the utilization of processors and the aver-
age system time is discussed. Finally, in Section 5.6, we briefly look at the bounds when the
number of the processors is limited to a finite number.

5.2 Some Properties of Random Process Graphs

5.2.1 Total Number of Arrangements with N Tasks

Process graphs with N tasks can have r==1,23, - - - N levels. The only constraint on
the arrangement of the tasks is that each of the r levels must contain at least one task. There-
fore, we can replace the question, 'How many ways can we distribute N tasks in r levels with
each of the level containing at least one task’ by the following simpler question, 'How many
ways can we distribute (/V-r) tasks in r levels.’

This is a combinatorics problem. We know that the number of combinations of z dis-
tinct objects taken y at a time with repetition allowed is

(Y = (44

In terms of the number of tasks and levels, we wish to find the number of combinations of r lev-
els taken (N-r) at 2 time. An intuitive way of looking at this is to observe that we are selecting

e T e
VAT VI A

e v
v d

DI 2
L. ') '.‘.'J g

G




a particular level for each of the (/N-r) tasks. Therefore, letting z == r and y == N-r, we bave <

I
lH-(N—r)—l) - (H-(N—r)-l) - [N-l) :'-.
N-r r~1 r~1 :
as the number of arrangements.
When summing the aumber of arrangements over all levels, we get the total aumber of -
arrangements for the N-task process graphs: N
N N-1
1 N-1
S = T =
[ =0
5.2.2 A Method of Constructing All Arrangements of Process Graphs with N Tasks
After we present a method that constructs the arrangements of process graphs by using
a recursive algorithm, we then prove that this algorithm generates all arrangements for the pro-
cess graphs of N tasks. From this coastruction method, we will see that the number of arrange- ’

ments for an N-task and r-level process graph forms s Pascal tree (from which we can also
obtain the number of arrangements for a process graph with N tasks).

The construction method is shown in Algorithm C:

Algorithm C
1. For Na=x=], there is just one arrangement

2. For N2>2 tasks and r levels, we add to all the arrangements (possibly none) with (N-1)
tasks and (r-1) levels, one task at a new level, the r™ level; we also add one task to the
™ level of all the arrangements (possibly none) with (N-1) tasks and r levels.

3. Repeat Step 2 for each level r == 23, - - - N to obtain all the arrangements for the N-
task process graph. '

Note that, in order to construct the arrangements for the N-task process graphs, we must also
construct all the i-task process graphs where i<N.




Figure 5.1 shows examples of constructing
a. all 2 arrangements of the 2-task process graphs from the one l-task process graph, and

b. all 10 arrangements of the 6-task, 3-level process graphs from the 4 arrangements of 5-
task, 2-level process graphs and 6 arrangements of the 5-task, 3-level process graphs.

From Figure 5.1, we observe an interesting property of the arrangements for process graphs.
That it, for any arrangement R, there exists another arrangement R which is symmetric to R
such that if in arrangement R, we let n, representing the number of tasks in level i, then in
arrangement R’ the number of tasks in i level, n', , i

’ .
n, =Ny, 4 fori=1,2 ---,L

where L is the total number of levels in R and R .

o0 O

Figure 5.1 Arrangements of Process Graphs with 2 Tasks ]

From Section 5.2.1 above, we know that, with N tasks there are (IrV: 1‘] arrangemeants

with r levels. The above algorithm constructs

79 X




N=§ O0O00 000 OO o

=z O 00 000 0000 R
000 oje oo o o O 3
=30 ofe) o 00 o 000
3 O o 00 00 000 o) »
’ “
0000 000 0O o
=% O 00O 000 0000
=3 O O o) o)
4 ' 000 OO (oo O o o
5 @) (o)) O oo O 000
o¥o) 00 000 000 0000 (oo
Figure 5.1b Arrangements of Process Graphs with 6 Tasks and 3 Levels :
N-1}-1 N-1)-1 N-1
(PR + (Y = (05) -
arrangements. Hence, if we can show that all of the (1:,:“) arrangements are unique, then we :
shall have obtained all the arrangements with N tasks and r levels. :
Lemma 5.1
All arrangements created for process graphs with N tasks and L levels using the Algorithm C -
are unique. z
Proof
Assume all unique arrangements with (/N-1) tasks and r==1,2, - - - (N-1) levels. To construct
the arrangements with N tasks and L levels, where 1< L< N, we add a task to the new L™ level
for all arrangements with {N-1) tasks and (L~1) levels, and we add a task to the bottom leve! of
all arrangements with (/V-1) tasks and L levels. The arrangements for the former case will have ‘
only one task at the L' level, while the arrangements from the latter case will have more than s
one task in the L' level. Hence, between these two cases, no two arrangements can be identical. '_'.
80 .

..........................................................
.................................................................................
.......................................................

.......................................
...............

--------------




We know from the assumption that all the arrangements with (/N-1) tasks are unique;
therefore, the resulting arrangements after adding a new level, the L™ level, with one task i it,

R Rl AR

should still be unique in the former case; the resulting arrangements after adding a new task to
the L™ level should also be unique within the latter case. Thus, all (7:11) arrangements

' obtained by our algorithm are uniqué.

i Theorem 5.2
' All arrangements created by Algorithm C for N-task process graphs are unique,

Proof.

From Lemma 5.1 we know that the arrangements are unique within each level r. Since arrange-
ments in different levels cannot be similar to each other (this is due to the constraint that each
level must have at least one task), no two arrangements in the 2(¥ arrangements created by
Algorithm C are similar to each other.

From this construction method, we see that the number of arrangements for N tasks
and r levels actually forms a Pascal tree. In the next section, we show that, as N becomes large,
- the distribution of the number of arrangements with respect to the number of levels is Gaussian.

§.2.3 Distribution of the Number of Arrangements

The pumber of arrangements for an N-task process graph with respect to each level is a
binomial number. If we analyze the distribution of the tasks as a random variable, Y, such that
if Y, == 1, a new task is added to a new level; if Y, = 0, it is added to an existing level. In a
Pascal tree, this is equivalent to going either to the left (i.e. the number of levels remains the
same) or to the right (i.c. the number of levels increases by one) of the current location in the -1

next level of the Pascal tree. "

N
We define a random variable, Y == Y Y, where

im=]
1 unth prodability ¢
Y, = 0 with prodability p == 1-¢
e
We let p—q--;—. When we sum N such random variables, we obtain the Bernoulli distribution -
81 ::‘4

----------
........




v o ——— ——————— ‘nd T B Znde nd i Baat s St it R S B
T o o e o T O T T T T ) =

Py (k) = (f)p”"q', which bas the mean of N ¢ = N/2 and a variance of N p ¢ = N/4 when

p= % In terms of our parameters, when Y, == 1, we add the new node i to a new level of the

arrangement; when Y, == 0, we add the new node i to one of the existing levels. Summing N of
the random variables Y,, we bave an arrangement with Y levels. This distribution is the same
as the distribution for the number of arrangements with respect to the number of levels in a
process graph with N tasks. If we normalize this distribution so that the mean is zero and the
variance is one, then the characteristic function' is given by [MISE64|

N
1w (X4
o) = | 5o T 4 0oV
- Ld w N
(5]
where 1 = /= 1.
. @
Since ¢'* = l+ga..T+ cee,
2

o A

. W
H(w) = ? l+371v— 2 +

2 N

R
Fl e,

' Let X be a random variable with probability distribution function F{z). The characteristic
function of F{z) is the function ¢ defined for real w by

O(w) = }o e** dFlz) = y(w)+ivw)
where i = V71, b

y(w) = }, coswz dFlz)
and -

Hw) = 7 sinwzdFlz)




L A S Aad -Be b A ‘g En M A Anai AR el S o sl e LR i R

- [t ]

where O (z) denotes any function which goes to zero faster than z, that is, lim [ %] = 0.

t—0

Take the limit as N approaches infinity to obtain

i
2

o) =

e

But ¢ 2 is the characteristic function of a normalized (i.e., mean == 0 and variance = 1)
Gaussian distribution. Thus, we have shown that the number of arrangements with respect to
the number of levels is Gaussian distributed.

5.2.4 Chernoff Bound on the Ta!l Probabllity

Suppose we want to know the probability tha: a randomly selected arrasgement has
more than y levels. The Chernoff bound [KLEI75] gives us 2 very good bound on this iail pro-
bability.

First, from |[KLEI75] we find the moment generating function for the sum of N Bernoulli
trials. For N= 1,

1 v
M) 2+2c

which indicates that, with probability %, we add a new level ( ¢'*), and with probability -;—, we

don't add a new level ( ¢°’). We now define the semi-invariant generating function

~(v) =InM{v) = In[—;-+-;-e"]

The Chernoff bound for the tail of our density function is given by [KLEI75] as

p[yzylse-w+ﬂv(v)

Since this inequality is good for any value of v > 0, we should choose v, as in [KLEI75], to _|
create the tightest possible bound. This is done by differentiating the exponent and setting it to -_::;
zero. We then find the optimum relationship between v and y as }
R

83 :'.'_:

...J




y= N1V (v)
Hence, we have

-yqld)
Problrzﬁse"["" 20 ()

We let y= -12!+Ne, and 0<e<%. In order to find the optimum relationship between v and yp,

we let
v = N+v)
1.,
-t
-N 2 -N ¢’
1, 1+¢°
-§-+?e

Solving for v, we get

y

v |lp—r

N-y

1ie
= In

——

Thus,
Prob| Y2y = Prob|Y> Nv")(v)]
1,1 [
N[lnl;i»?z l- 14’

<e

Figure 5.2a shows several curves of P versus ¢ with various values of N where P is the

upper bound on the tail probabilities such that Prod [ Y> [ % + N c] ] < P. We note that,

as N increases, the probability is concentrated closer to yzk-N;—l and the bound on the tail

probability falls faster. Figure 5.2b shows the probability of a randomly selected process graph
having more than y levels. -

.........
.........
.....

........
.......

...........




R S S S e e S W S T W W ey LA A L - v = =
16: T T T T T T T T T
od -
- i -
Sk -
- -
— -
- | N=100
-

1
1

.
.4'

- =55 3
- =500
o5k ]
- -y
- L
N = 1000 -
O~
o -
~ n
—_ DB -
'Q.: - B
N« 5000 -
-—

T
1

N = 10000

! llllll[

]
L

0001

T T 171 rn|

]
1

Figure 5.2a Chernoff Bound |

85

c . . . .- RS RN -
- R - - - .
N AN . .
- PR - .-, e s
. e St et - T .t PR ~ PR A S Y
. B - . R "W, - PP S SRR D}
. P I R I T e . et aT et e ], - LY .
AP ol SN 3.0 SIS IV T S W TR Yo T Yt Thi8 Wit | 5 .A\A"'A'A\.A'A.'_A Yo - »




5.2.5 Generation of Random Process Graphs

Random process graphs can be produced by at least the following four methods. In the
first method, we are given the total number of levels for all graphs and a probability distribu-
tion of the width of each level. After selecting a random number of tasks for each level, pre-
cedence relationships are created by randomly connecting the nodes of the adjacent levels with
the direction of all edges pointing toward the terminal node.

PIY.2 vyl

A /““"

N increasing

it
Q

N
~ 2
Figure 5.2b Prob [ ¥ 2> 4}
For the second method, we initially produce a connected undirected random graph with ‘_:!

a given number of tasks and edges. We next select a given node as the initial task and assign
edge directions to the nodes one hop away. This is followed by assigning edge directions from -4
nodes that are one hop away to nodes that are two hops away. This procedure is repeated until .
the edge of the node farthest away from the initial node has been assigned a direction. Any

remaining undirected edges can have either direction. Then, in order to conform with s normal

process graph, we add an additional terminal node. An edge will be added to this terminal node

from all nodes with an out-degree of zero.




I the number of precedence relationships are large, the resulting process graph will gen-
erally have a large number of levels. This is due to the constraint that no precedence relation-
ships are allowed between any two tasks on the same level. If this edge does exist, one of the

nodes is pushed down to the following level. In fact, if the number of edges equals A"_’;’_‘ﬂ.

only one process graph can be generated — a linear chain of N tasks.

Drawing from the theory of branching process [HARRG3|, the third method uses the
Galton-Watson branching process to create a random graph. In this process, level one has one
task. Then, for each task at level i, it has the probability P; to create k new tasks at the (i+1)*
level, where k=0,1,2, : - - . An edge connects each of the new tasks with the creating task. If a
task creates no new task, it is extinguished, and it has a precedence relationship to any task on
the next level. A difficulty with this method is that there is a possibility that the process graph
will bave an infinite number of levels. If a finite-level process graph is found, it is, by our
definition, a structured process graph.

Finally, Dodin [DODI81| proposed another method of creating random process graphs
with NV nodes and M edges. In his method, the adjacency matrix that represents the precedence
telationships is created in the following two ways:

1. Deletion Method
Create an adjacency matrix with the upper triangle full of 1's. Randomly delete

M%ﬂl - M edges on the condition that there exist at least one edge into and one edge

out of any node.

2. Addition Method _
Distribute one edge to nodes (1,2) and one edge to nodes (N-1, N), and randomly distri-
bute the remaining M - 2 edges to the upper triangle of the adjacency matrix on the
condition that there exist at least one edge into and one edge out of any node.

From this adjacency matrix, a process graph is generated by mapping all the edges in
the matrix onto a set of N podes enumerated from 1 to N. Because only the upper triangle of
the adjacency matrix can have 1's, the resulting directed graph is also guaranteed to be acyclic.




Hence, as the number of tasks per job becomes large, the concurrency measure takes on
the value of one half.

5.4 Random Task Service Times (, G°, z°, P = o)

5.4.1 Bounds on the Average System Time without the Number of Precedence Rela-
tionships

In this section, an upper bound and a lower bound on the average system time are
found for the random process graph with N tasks and task service times that is exponentially
distributed.

§.4.1.1 Upper Bound

We wish to find an upper bound on the average system time of an N-task process graph.
From the Chernoff bound we know the probability of a randomly chosen process graph having
more than y levels in its arrangement. Thus, for a specific y, if we can find an upper bound,
then this bound should be correct for any process graph with probability of 1-Prod{Y2>4f. In
this section we obtain an upper bound for process graphs with the number of levels equal to or
less than y. As N—oco we can let y be arbitrarily close to (but greater than) the mean number
of levels, m, and the probability that the average system time of any randomly selected process
graph will be smaller than this upper bound will approach one.

The following two lemmas provide an upper bound on the average system time for
arrangements with less than or equal to y levels where m<y< N.

Lemma 5.9 - 1
Given N tasks, and y levels for a process graph, il we assign %’— tasks to each level, then the

resulting forced synchronization time (FST) is the maximum average system time with respect to
the other arrangements of the tasks with y levels.

Forced synchronization time is defined to be the time required to process a process graph such
that each task in a given level is being blocked by all the tasks in the previous level. In other
words, we are forcing the tasks to be executed one level at a time (with all tasks in a given level




N T Ty ey —r—y—y

waiting for the slowest task in the previous level to complete before they all start execution).

Proof of Lemma 5.3

Since the tasks have been assumed to have exponential service times with a mean of % the

blocking time of a task with d tasks blocking it is (see Section 4.3.1) ‘*
% 1 &1 :
-enfa= L 5oL
0 b oot

With n, tasks in each level 5, i = 1,2, - - - ,y, we have the upper bound on the total average sys-

tem time S as

2 ]
Z—.'O' .

ot R

324

tl-—

1
S -— -
ua"ug, "

subject to the conditions:

t n =N
and

n,>0 Yj

We must show that n, = ﬁ, for each level ;, maximizes Syp.

Assuming n, = —1:-, for all j, gives the maximum Sy,

Sup == -té—:'
e

=1

Suppose there exists another arrangement such that its FST S°is larger than Syp. Let

By, By vnll”'}h e -"(onﬂ-ln s 1"'

be the arrangements, where

n.'>% for 1<i<s




-------

el .
. % .

for s+1<i<t

<=  for t+1<i<y

then

S’ = SUU""I- 2. 1 - V.‘ 1
# "‘l!~kuh :;'lz-ua
y

'Elt-

$
where w21 Vi, g = 2 ng - :iv- is the total number of additional nodes added to levels 1 to s,
bl v
and b = (y-t)-lyl - é n; is the total number of nodes taken out of levels (¢+1) to y. Since the
bami41

total oumber of tasks remain constant, each additional task over % for a level i where ¢ is

between 1 and s, one task must be taken out of another level § where j is between ¢+1 and y.
Therefore, sxxb. Now,

2 w21
ﬁ+l ﬁ+u.v,
Vv ¥y
and
1 1 N
< 1S v, < —
ﬁ_l ﬂ_w' v
1} '}
Thus,
5'< St [ -8 [ =] 3
K —+1] —-1]
v
l l l '-
= Systa— 1
BN N, 1
vy ‘
Since Nl < _Nl ,» we bave 5°<Syp which contradicts the assumption. Hence, we have
—_—t+] —1 a0
y y : i
shown that the arrangement . 4
94
N
nwm— Yy
/] ¥ )

gives us the maximum FST.

.......................
.......................
- .

-------------

......
.................
.........
...........



L B S aae en Boe g i s B A s ca et g JAA: et Btk a-n 0 T e B atl bt AR AV AR SRR i AP O i

F In the cases when n, is not ap integer in the above lemma, the arrangement that gives

the maximum FST is constructed as follows. Let u w Remainder of i:—, w == Integer part of %

then n,= w+l for j=1,2,, --- ,uand n,= wlor j=u+l, --- ,y From the proof of

the above lemma, we know

¥ iselpur ey
I J s J ® )

130}
10
1 t'}< Iz

Therefore, the arrangement n, = —yI! /s still gives us the maximum FST for any process graph

baving y levels even if there is a possibility that no process graph can have fractional nodes in a
level.

Lemma 5.4
Given the FST calculated in Lemma 5.3 for an N-task and glevel process graph, it is also the
maximum FST for any process graph with less than y levels.

Proof
This lemma can be formulated as the following nonlinear optimization problem

N

—2

-l'

Maz S=y

subject to y,<y

»
We know that the harmonic series [KNUT73a), 2%, can be approximated by
o)

1
'gl Inn+$+ ﬁ-m

where ¢ is the Euler's constant (== 0.57721 - - - ). Therefore,

oy ;

s=dy, lnyﬁ+o+—-




Now, we assume y, is continuous,

N

s 1 i 1 n
— R —— m— . cm———c—

h
ll N % vfl
+—| =Pt e —
sl TTIN IV
ll N n #
- —|d-1+ln— 4+ —-—
B +nﬂ1+N 4N?

For 1<y, <N, we find that %>0. or the slope of S versus y, is positive in the region
h

1<y, <N. Since at y = 1,

N
1 & 1 &
S ey —_—— =Y =

we have $>0 as an increasing function with respect to y,. The condition y, <y implies that the
maximum S occurs at y, == y. Therefore, the maximum FST obtained for an N-task process

graph with y levels is also the maximum FST for all N-task process graphs with less than y lev-
els.

The next theorem follows as the result of the two above lemmas.

Theorem 5.5
An upper bound for the average system time of an N-task process graph with y levels or less and

exponential task times with mean % is

1
S R Y
valy) r

N
1
L5

'''''''''

ROV IR I

..
"""‘l

2 22
4 5 3 7

L T RN
e e it

L
'.,..-. .

A
A

s

....
. l"."

[N
-"'A‘J"L

".v' "
ek aa sl




T T Ty Ty Ty vRe———

This upper bound is good only for process graphs with less than or equal to y levels.
But since the number of arrangements in a process graph is Gaussian distributed, we expect that

for y > %. as N—oo, the probability that a randomly chosen process giaph has a higher aver-
age system time than Syp(y) gets smaller. In fact, we show in the next theorem that as N—oo,
and y = %+N6 for any small positive 5, the tail probability Prob|Y> 1}, or the probability that

a process graph has more than y levels, approaches zero.

Theorem 5.6
For y= i2"-+N6, where § is a real positive number, and Y is the number of levels in a randomly

selected process graph, we have

lim Prob(Y2>y|—0
N—0

Proof:
The Chernoff bound gives us

it
Prob|Y24<e I

In order for hl'im Prob| V2> 1} —0 we must show
=00
1. 1 e’
In| =4+— —_—
n[ 2+ 2 c'i <vl+c'

1,
Since v=In

and since 0< ¢<% (from Section 5.2.4), we have v>0.

—=€

Let z = ¢, or v==Inz, where z>1. The inequality we must show becomes

1 1 vz
Il Lsl
“l2+2‘i< 1+z

(l+:)|n[ —;-4--;—:’ < znz

T
{
=

Taking the exponential of both sides, we get




| S |

- — r

2+2'] <
(143)

For 2> 1, ¥ is always greater than l%+71;4 .

Hence we have shown lim Prob[Y2y] — 0 for any §>0.
L J

With N a large number, we can then state that the upper bound on the average system
time is

N

1 1 121
lim Prob|Ny— VY = < Syg < N Bl R | '
NLoo L“Q‘_UU_ UT;E;

B

where N = N(-;— = §), Ny = N(-;- + 5) and & is any arbitrarily small number. That is,

Sy = LY
=T

5.4.1.2 Lower Bound

For an N-task process graph, if we are given the number of levels y, then we know that
the minimum amount of average processing time is y% where % is the average processing time

of a task. With respect to all arrangements of the process graph with N tasks, this average pro-
cessing time will be a lower bound with probability 1-Prob|Y<y]. Since the number of arrange-

ments with respect to the number of levels is Gaussiaa distributed with mean —l;-,-

metry, we have Prob|Y< %—ld - Prob[Y>__-21Y-+y]. Hence, all the properties of the Chernoff

, from the sym-

bound discussed in the last section can be app}ied here also. Specifically, we can let N—oo, for
arbitrary small §, and §>0, then

. 1 1 1 1
lim Prab[Nl : -6]7 ssuszv[?s];] 1

This is true since the tail probability approaches zero as N becomes very large. Thus,

~ N
SLB- 2“.

95




§.4.1.3 Discussion

In last two sections, we see that for N >> 1, the average system time [or the case
k. G’ z°, P= oo is bounded by

: 1IN s<c3 N
R 2 47 T 4

vyYyYvwYy
i s
.

with high probability. In terms of speedup, it is bounded by

1
1=-<o0< 2.
3—0—

So, on the average, the best speedup we can achieve is two and the least speedup is

1
13.

5.4.2 Upper Bound with a Fixed Number of Precedence Relationships

We have studied random process graphs without considering the number of precedence
relationships in the previous section. We have obtained some general properties of the arrange-
ments of the tasks for process graphs and bounds on the average system time. The upper bound
and the lower bound obtained are probabilistic such that as the number of tasks becomes large,
the more certain we are regarding these bounds. However, if we now include the number of pre-

cedence relationships, we can improve these bounds

In this section, the number of precedence relationships are introduced into the model.
We will obtain a tighter bound using the number of precedence relationships, the number of lev-
els and the number of tasks in a random process graph as parameters. We first develop the idea
of minimally connected process graphs. The number of edges required for the minimally con-
nected process graph are studied as well as how additional edges can be added to it. Next, an

algorithm is presented which gives a construction method for a process graph G* with N nodes, ]
M edges and L levels. We will prove that the forced synchronization time (FST) obtained from .
process graph G’ is indeed an upper bound on the average system time of all random process
graphs with N nodes, M edges and L levels.

gy v ""',

LT U R TR T TR e
RN Ve T e e S LT
PPN P S e gt et et o




$.4.2.1 Minimally Connected Process Graph

Given any arrangement, the M edges can connect only a limited set of tasks. No edges,
for example, are allowed to connect any tasks within the same level of 3 process graph. In Fig-
ure 5.3, we see the 26 legal places where the precedence relationships can be placed in a particu-
lar 3 level, 9 task graph: six positions between the first and the second level, eight between the
second level and the third level, and twelve between the first level and the third level.

Figure 5.3 Legal Places for Precedence Relationships

If we allow the M edges to be randomly distributed among all these legal places, we often find
that the process graph is not even connected. Even with a large enough number of edges, such

as M > NlogN, there is no guarantee the resulting process graph is connected (although it is
highly likely).

For purposes of calculating bounds on the average system time, the underlying arrange-
ment must be connected such that each node is maintained at its proper level in the process
graph. A node, j, is said to be in i level if there exists a shortest path from the initial node to
node j such that the number of nodes in this path equals &. We define M, to be the minimum
number of edges required to fix all the nodes of a particular process graph in this proper level.
All edges are between nodes of the adjacent levels instead of between nodes of non-adjacent lev-
els because of our definition of level and because of the following Lemma. A

97




Lemma 5.7

The blocking time of an edge between two neighboring levels is greater than the blocking time

- of the same edge between two levels not neighboring each other.

Proof.

Suppose node i at level r is being blocked by node 5 which is at level r- 2. If there exist two
other edges (j,k) and (k,i) for any node k at level r - 1, then edge (j,i) presents no blocking to
pode 5 (See Figure 5.4) for the following reasons.

Figure 5.4 Redyced Blocking Effect

As soon as node j is completed, node kstarts execution. Since node k is still blocking node i, the
release of the blocking from node j to node § does not allow node i to start execution. If no such
indirect blocking edges exist, we notice the fact that the blocking eflect of the edge (j,i) is
reduced partially by the average task time of other tasks in level r— 1 which do block node .
Hence, the blocking due to the edge (j,i) is not worse than any edge (k,i} if node k belongs to

level r - 1.




Since we will be looking for an upper bound on the average system time with a limited number
of precedence relationships and since the edges between adjacent levels result in greater block-
ing, we assume all edges are between two adjacent levels.

Figure 5.5 shows some examples of minimally connected process graphs. Each edge in
Figure 5.5 is necessary in order to fix the nodes in their proper levels within the process graph.
By deleting any one edge, the resulting process graph will be either disconnected or at least one
g node is no longer in a path from the initial node to the terminating node.

Figure 5.5 Minimally Connected Process Graph-

L A'..‘u—ﬁ. ’

- -
l' '. "
Ao o o

e atd

. ..
KPR | ST )
AR B
e
FEILIPS DR N




XL

From Lemma 5.7, we can calculate the exact value of M, for a process graph. Since we
: are looking for an upper bound of the average system time, we place all the edges between
nodes in adjacent levels. Define n, to be the number of tasks in level i, for i= 1,2, --- L,

. A ) e v
1 RS -
)] P, .

M

For any two adjacent levels, say levels iand i+ 1, if n, 2 n,,, then there must be at

.
N

2tz

B e N 4

least n, edges between i™ level and (i + 1)* level. Otherwise, at least one of the nodes, say node

L4
v

j, in the i** level will have no edge leaving it and the path from the initial node toward the ter-
minating node stops at node j. This contradicts the definition of a task in a process graph.
Therefore, there must be at least n, edges between levels s and i + 1.

S O

If, on the other hand, n, < n,,;, then there must be at least n, ., edges between i*
level and (i + 1)* level. If there are less than n,,, edges, then at least one of the nodes, say
node j, in (i + 1)** level has no edges entering it. It cannot be in any path from the initial node
to the terminating node. This contradicts the definition of a task in a process graph, therefore,
there must be at least n, . ; edges between levels i and s + 1.

By selecting the larger of n, and n, ., to be the minimum oumber of edges between lev-
els i and i + 1, we have enough edges to keep all nodes in the i* and (i + 1)* levels properly
defined. Summing over all levels, we have

M, = max (ny,n] + max (ng,nd + ‘- + max(n,,ng

e,

The rules for making the minimally connected process graph are:

Let levels i and i+1 be adjacent in the process graph,

1. n, < LI

.ot
LAY SRSy

For each node in level { we assign an integer 1, 2, 3, ... , n, and for each node in level
i + 1 we also assign an integer 1, 2, 3, ..., n,,,. Let jrepresent a node in level i+1 and

# equal to the remainder of % Make a connection between node s of level i and node j R

. ! R

of level 1 + 1.

3

2- n, == n,.H v]
-

For each node in level i, connect it to any node in level i+1 with indegree of zero. \1

N

3- n, > n’+l ::“
;}

For each node in level i and i+1, we assign an integer 1, 2, ... , n,and 1, 2, 3, ..., Ry '."

100




P e e e e AS M TR W % . L YTy

respectively. Let j represent a node in level i, and s equal to the remainder of 2
Rl

Make a connection between node j of level i and node # of level i+1.

In all the cases above, each node in the i* level has at least one edge going to some
node in the (i + 1)® level and each node in the (i + 1) level has at least one edge entering it
from some node in the i level. By extending this method to all levels, all nodes, except the ini-
tial and terminating nodes, have at least one edge entering and one edge leaving it. Hence each
pode is on a2 path between the initial and terminating node and each node is held in its proper
level in the process graph. Thus, we have a method for creating minimally connected process
graphs.

After we place the M, edges into the arrangement of a process graph, there are still
many pairs of nodes between the adjacent levels where an edge can be placed. We call each of
these pairs as the empty edge slot (EES). All M - M, edges are placed randomly into the EESs.

Two lemmas relating the values of M, with the other parameters of a process graph are:

Lemma 5.8

For any process graph with /V nodes and L levels, the maximum number M, occurs in process
graphs which have node arrangements such that the levels with more than one mode -.¢
separated with at least one level which has only one node. In these cases,

Moz M, = 2N-L-1 (5.1)

Proof.
We are maximizing

L1
M. = Y Maz(n, n,)
=
with respect to the numbers { n,}

L
Subject to Y n, = N
-]
Consider 4 adjacent levels j~1, j, j+1, and j+2, such that n,,, n, ny,, ny, are respectively the

oumber of nodes in each level. We assume n, > n,,, then there are four cases relating the
values of n,_, and n, and the values of n, ., and n, . 2 (The arguments for the case n, <n, ., is

101




L I T S E e et A A B A A A S A A e A gt Al Skt g Mo A Sk St gk S e I ATt - M S e At Jnaie st Jed se sl gl T

similar to the following discussion) We must show that the arrangement with
n; = +n4;-1and n:,.,, ; = 1 with other levels having the same number of nodes gives us
a higher M..

Casel.n, >n,_;and n ., 21,4,
In calculating Max M, for these four levels, we have Z edges between these three pairs
of levels, where
Z=n +n+n4,

But if we change the arrangement to n,_;, n,+ n,,, -1, 1, n, ., then the aumber of edges
becomes

Z' ma+aa-le+ntn-14n,,
But Z’ is larger than Z since

Z' -7 = 2”,"" 2 ‘ﬂ’...l - l) + n’¢g—(2ﬂ, + il,...l)

- n’+1—2+ n,..,zz 0
Thus, the arrangements of n', =+ n,,~1a0d n;.“ == 1, while fixing the values of other
n,'s, will give 3 higher or equal value of M.,.

Cm " ")-l > "l> n,...‘ > ﬂ,*zz 1

For this case, we have
Z=n_,+n+n,,

and by shifting (n, . ; - 1) nodes from (5 + 1)* level to j** level, we have

z' n,-l+n,+(n,+l-l)+n,+z ifn,_,)n,-&- ﬂ,+|-l
- .
2An+n 4 1~1)+n,2 ifn ,Sn+n,4,-1
and
’ {"14»2‘120 ifn,-1>n,+n,+1-l
z _z- n,+n,+,-2+n,+z-n,_,20 ifn,-ls n,+n,+1-l

Hence, Z' > Z or the new arrangement will give a possibly higher value of M,.

Case lll. 1 s R < NS < 'l,< Ry2




"y Py .

The argument for this case is similar to Case II above.

CaselV.n,_; >n>n>landnesD>ng,

In this case,
z- n}-l+ n,+ ﬂ]+2

and by shifting (n, .., - 1) nodes from (j + 1)* level to ;* level, we obtain

, ln_|+ﬂ’+n}+l-l+n,+z ifn,-1>n,+n,+1-l
z —l2n]+2n}+|"2+n,+z ifn,_,Sn,+n,+l-l
Therefore,
, {n,.H-l)O ifn_>n+n,.-1
Z -Z=lp 424, -2-0_,>0 iy S n+ner -1

or the new arrangement gives a higher value of M..

So for all four cases, we can always obtain a larger Maz M, by shifting nodes from the
(7, 41)" level to the n, level such that n, == n, + n, ;- 1and n/,, = 1.

To see that Max M, occurs when the levels with more than one node are separated by
at least one level which has only one node, we corsider four adjacent levels again. Suppose the
four adjacent levels j - 1, j, j + 1, and j + 2 have 1, n, 1, n, . ; nodes respectively where n, > 1
and n, 42 2 1. In calculating Max M, for these four levels, we bave a sum of

Z=n,+n+n,,
By shifting one node from j** level to (j + 1)* level, this summation becomes

7' = (n,-1)+(n-1)+ Maz(2,n ;)

=2n-2+Maz(2 n,2)

and .-'_'

2-2 m2+4n42-Maz(2,n4,2)>0
The value of M, is smaller when we shift one (or more) node from the j* level to the (j + 1)* 3
level. Hence, Max M, occurs when the levels with more than one node are separated by at least .

one level which has only one node.

103

AT S AL A YL I




it Ml M i il S Bl A hdh @ 9 a4

The simplest arrangement of the N-node and L-level process graph with this property
bas N- (L - 1) nodes in one level between the second and the (L - 1)* level and one node in
each of the remaining (L - 1) levels. With this arrangement, we see that

MazM, = (L-3)+2(N-L+1)
or
MazM. =2N-L-~1

1}

Lemma 5.9
The minimum M, occurs when the nodes are distributed evenly among all levels. Let

z == Remainder of _}_V-_2

L-2

_ [ 2]
12

- N-2]
)

Then

Min M, = [(z+ 1)z+(1.-z-2),]

Proof.
We are minimizing

Min M, = gmnx( Ny Ry

with respect to the numbers{ n,}

t

L
Subject to Y, n,= N
=]

Suppose the Min M, occurred in an arrangement where four adjacent levels
J-1,45,7+ 1, and j + 2 have an equal number of nodes,

104

g
RN WG SCAUNICAIUNT PRSP UNLNIN




B ™M= My ™ N2
:“f:i Now we show that by moving a node from the j* level to the (j + 1)™ level, the value of M. for
- the resulting arrangement will be lacger.
In calculating Max M, for these four levels, we have a sum of
Z- n,_l+ n,+ ")+l-3ﬂ,
By moving one node from ;* level to (5 + 1) level, we have a different sum of

2 ma_ +(m+l)+(n,+1)m3n+2>2

The same is true in cases

b L. n,_,=mnmn, =mzandn ,=y

2. n. =mnmzand ny, =0 =y

3. n. mzandn,mn, =n, ,my

Hence, we see that if we try to assign an 'equal’ aumber of nodes to each level for all levels, we
obtain the minimum M, Thus, besides one node in the initial level and one node in the ter-
minating level, each of the first z successive levels will have z nodes and each of the other
(L - z - 2) levels will have y nodes. Finally, we have

Min M, = [(z+l): + (L—Z-2)ﬂ]

$.4.2.2 An Upper Bound

In Section 5.4.1.1, an upper bound for the average system time was obtained from the
arrangement with an equal number of nodes per level. Indeed, this is also true in the case of )
process graphs with a fixed number of edges. We show this in the next theorem after giving an B
algorithm (Algorithm A) which constructs an Nenode process graph with M edges in L levels.

ALGORITHM A -

STEP 1. Distribute one node for the initial task and one mode for the terminating
task.

108 -0

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
.........................
..............

- T et e

M e e Te e A IR e

P I I LR SR S S N oY s %,
N R L T S T Ty Y . a i w o B
DR T A AR AT I Py P




STEP 2 Let

. N-2
R d —
z = Remainder of )
A-2]
zm | ——
L-2
N-2
y -
£=
» For each of the levels 2, 3, ..., z+1, place z nodes in them, and for each of the levels
a z+2, 243, ..., L-1, place y nodes in them.
F STEP 3: Use M, = (z+1)z + (L-2-2)y edges to minimally connmect this arrangement
' of tasks.
STEP 4 Randomly distribute the remsining edges, M - M, uniformly among the
EES's.
Theorem 5.10

It we construct a process graph with /V nodes, M edges, and L levels according to ALGORITHM
A, and assuming each task has an exponential service time distribution with mean %. then an

upper bound on the average system time
1[& &1
m-{zt{
s =} 1

t, = the mazimum number of blocking edges into a node in level j

where

EES,
= min { [b'+(M.M‘)-E"E;] ,n,_‘}

b, = max [b,lq 12 @ node in level J]
]

b, = indegree of node ¢ from the minimally connected process graph '.:J




EES, = number of emply edge slots between levels j~1 and j
EESy = total number of empty edge slots
n,_, = number of nodes in level -1

n‘-l

Proof.
Case 1) For M 2> max M,

In this case, there are enough edges such that 5, equals the number of nodes in the pre-
vious level, n,, for all levels j > 2. Therefore {, = n_, for all j >2. The proof that the
arrangement generated by ALGORITHM A gives the largest FST is similar to the proof of
Lemma 5.3 of the last section. Therefore, we only need to show that with M > max M, we
have enough edges for each level to force the maximum indegree of a node in that level to be
equal to the number of nodes in the previous level (i.e. b, == n,, ). The number of extra edges
is

M-M,

2> MazM,- Min M,

-(2N-L-1) - [(z+l)[ %-22- + (L-z-zykivl;—;"-ﬂ

where 2 is the remainder of LZ_;;"- Since for z not equal to zero, the value of Min M, becomes

smaller, we shall let z = 0,

The inequality we wish to prove is then

N-2
{2N-L-1) - (L-l)—LTZ— S N-2

L+ 3 )

The left hand side represents the number of additional edges remaining after Maz M, - Min M,
have been distributed equally between the L-2 levels plus one edge representing the minimal

connection of the node. The right hand side represents the number of nodes per level. Multi-
plying both sides by (L-3), we get

107

S RN

e A A

e v, v

'. ...""’.".",_"'A.‘ - 3

v




AR FC 2 2 i e e At e A gt s i w A A gt St St S St A S S e S AL Bt i S it B n e e el e

aN-L-1-(L-1) D2 > [ N-2

o 2 [ e - w

N-2
-2

:wzl l(2L-4)+4

_ 2NL-4N _

n
3 2N

Which clearly is true. In other words, we have enough edges to force the maximum blocking for
each level. Hence the FST obtained from ALGORITHM A does give an upper bound for the

average system time.

Case 2 Min M. < M < Maz M,

Let

t 1
A=Y = 21
= J

£0) = 1

L L
We are maximizing Y fd,) subject to Y d, < constant, where d, is the maximum indegree at
=l L] N

level q. From the proof of Lemma 5.3, we find that the arrangement of 4, that gives the max-

imum sum of {d,) is

conslant

——— A, l
) =34 L~

dy==

and d, = 0 and d; = 1. This arrangement is exactly what ALGORITHM A generated. So for

Min M, < M < Maz M., Syp obtained from the FST of the arrangement generated by ALGO-
RITHM A is also an upper bound.

il

<

Figure 5.6 gives the minimally connected process graphs for some of the arrangements
with N == 10 and L == 6. Table 5.1 shows simulation resuits and the predicted upper bound for
the average system time with M == 12 for the process graphs with the arrangements shown in
Figure 5.6. Since the arrangement of nodes in Case I in Figure 5.6 requires a minimum of 13
edges to be minimally copnected and M < 13, no process graphs can be created with 12 edges,

-4
\

3
t 4

and we caonot find its average system time.

I SR

108

................................

.......
..................

PN G AT




N

' Case | Simulated Average Calculated

. : System Time Upper Bound

j [ not feasible 378.7

I 364.24 378.7

N m 362.98 378.7

_ v 367.53 378.7
Table 5.1

W

5.4.3 Comparison of The Two Upper Bounds

Two upper bounds have been obtained with different parameters. In Section 5.4.1.1, an
. . upper bound was obtained through the probabilistic method on the likelihood of a process graph
+ having a certain number of levels or less. In Section 5.4.2.2, another upper bound was obtained
with 2 fixed aumber of nodes, edges, and levels. Since the latter method uses more information,

- ‘ its bound should be tighter than the bound obtained by the former method.

Let Syp represent the upper bound obtained in Section 5.4.1.1 and Syga represent the
upper bound obtained in Section 5.4.2.2.

Theorem 5.11 -
. N -3
Svem £ Sypif L < ik ]
Proof. ]
- 4
Case 1)L < [%] ]
From the calculation of Syp, we know that Syp is the largest FST for any process graph '_-'_':‘
|
having [%] levels. - J
&
N
109 v
\:

5

AT
LA N U ]

Bt el

il




T T = - Padieia At it S S Sasthd

M= 13
EES =0 Me = 12

EES= 4.
m

MB - 11 .M° - 10 X
EES~8 "EES= 6 %

Figure 5.6 Minimally Connected Process Graph with Nw= 10and L= 6 j

v

P
St

110




ek,

o ot i Pl - . n —— T A T L T e

Since the number of levels is smaller than [%], we have proved in Lemma 5.4 thas Syp

is also the maximum FST for all levels less than [!2!] . Hence, Sysy < Sus.

Case 2) L = [-‘;

In this case, the arrangements used to obtain both bounds are the same. If the number
of edges, M, is greater than or equal to max M,, Sypy is obtained with max FST of this arrange-
ment or

Susm = Sup
It M < max M_, there will not be enough edges at every level for the maximum FST. Thus,

Suau < SUB

From the above two cases, we conclude Sygy < Sipif L < [%l

When L > [%l, it is likely that Sypy > Syp. The upper bound Sypy uses more

inoformation but it is a worse bound. This implies we did not use the information optimally in
calculating Sypy The inequality (Sygy > Syp) is not always true because with different param-

eters of N, M, and L, it is possible to construct counter examples. Also note that since L =& %

due to the law of large numbers, the case (L >> [ % ]) is not likely to occur.

5.5 Trade Off between Average System Time and Utllization of Processors for a
Diamond-shaped Process Graph (&, G*, 2z, P < )

Given a process graph, if we have enough processors such that the number of processors,
P, assigned to one job is greater than Mcz{ n.}, then the average system time is just the time

required to process L levels of nodes. The utilization of the P processors is, however, very low.
In order to utilize each processor more, on the other hand, the average system time will

111

.................................
...................................

A e aaea

R TR

.
.




b SR SRS S g g M N - M e ey i anane - e, R i e 2 e o o,

R Ry ap—

increase. In this section, we will study this trade off by using the notion of "power” defined in
Chapter 4. The average task time is assumed (o be constant. So we define

Power = R = ~L_

s/ X
where p is the efficiency of the P processors, S is the average system time, and X is the constant

task service time (i.e., % is the normalized average system time).

If we can assume that the shape of process graphs is bounded by a parallelgram (as in
Figure 5.7) which can be characterized by two parameters, L and m (where L is the number of
levels in the process graph and m is the slope of the diamond enclosing the boundary tasks in

this process graph). If the number of levels, L, is even, then we assume the (? ] level and the

% + ll level have the same number of tasks.

Let n ({) denote the number of tasks on the / ** level, and let n (1) == 1. Then, we know

lSlS%udLioevcn
n(l)-n(i-1)=2> L+
m 11 3 1 and L is 0dd
L

. -2-<l5L and L s even
n(l)-n{l+1)m2L
m -’1-;—‘—«51, and L is odd

Hence, for an even number of levels L,

2 L
1+ =(i-1) 1S1S =
n(l)= l+-’l;T l-%+1
2 (L 2 L L.<i<ct
e 2| 5ot - E (-5 2

and for an odd number of levels L,

112

1
el

PORLY WU Y S )

oy

a4

- 4

PP B g R

A e ”




—7 T

Cah sat ant ol At sl R
"'--tvcx~vx‘:'~" . .

M~ - bt :

»
o 1+ 2 (i-1) 1giglt!
. 4 m 2
o n(l)=
1+i[“ + 1 L+l i<y
¢ ]
For example, let L == 9 and m == 2, then
n(l)=mld2(l-1)m=1 tor1< 1< L1
- m 2

and

-10-1 forL;1<l<L

Therefore, given m and L, the total number of tasks /N in a process graph is

L
Z 2
2y |1+ =(i-1) L even
[X_J m
Ne) oboa
2 2 .. L+1
2y [1+;(x—l)]+[l+—-[ 1]] L odd .
T - d
L[l—ll+-l-'-l£+l] L even
m mi{2 -
= 1 1 L+1
(L-l)(l--"-.]+;(L—lll : l+1 L odd 2
Next, we define - 1

B == the width of the process graph at the widest level

1+£~—1 L even
m m

14 L1 2 L odd
m m

113




H = the number of levels in a process graph before all P processors
decome busy
| P-1 +1 (P-1)m+ 2
2/ m 2
Figure 5.7 shows a typical diamond-shaped process graph.
T 1
' m H
L / i B I\
N 4 ’
——F—
Figure 5.7 Diamond-shaped Process Graph
We find
14 B
p == g
‘ Vl N
2H+ ? -}
{
where -
Cw
Y
o
X
- '_:‘
el :1
o 114 R
o N
b ]
P 1
e . -_-.._:_i

e e atdr i i e SR sl e Ml B S Bl B e il aa - R e




: P2 ¢fficiency averaged over all the time when not all P processors are busy

1+ G-y 2

. 1 &

- R e S

1 H e P

- 1 2 H+1
X ‘?L‘:* m]

and

o]
VanN-2 } 1+(:-1):

tam] ’

21 o
-N-w[ l--—]-—H(H+l)
m m

Note that when P == 1, then 4 = 1 and we expect p == 1; this can be verified from the
above expressions. Furthermore, if P = B, we have for even aumber of levels L,

P =

1 2 H+ 1
‘?P‘:* m]

3 L
- 1 g 7 *!
. = 2 L l-;+ m
3 1- =+ =
i m m

2m+L-2

2m+2L-4
and for L odd, we have

. 4
2Hp + [?
.:. b= v
: 2H+ ?

where

: 118




--------

Lalir A A SIS B S~ Yt N e A A . ek AN AN A A e

VeL-1)a-o)e S-S5 4

L+1 2 2 L+1|L+1
-9 - o= | - —
'2l1m]m2(2“]
=l[l-L-m]
m
and
P_l+3l1.+1_ll
m 2
m+ L-1
i —————————m———
m
Thus,
2le-l
-
° 12
L+1
L+1 1 2 z *!
1= It Yt -1
1+ —
m
-
L
am+L-2+ 1
L
2m+ L -2

For both cases of p, we see that

. 1
fim o=

This can be observed from the fact that the area occupied by the diamond is exactly half the
area of a rectangle with L levels long and P == B processors wide. The reason that p is not
exactly one half for small L is due to the fact that a full task might not be able to exist on the
boundary of the diamond.

116




As an approximation, we assume each level has a continuum of tasks. We now find the
number of processors that maximizes power R.

Let i be the index of the levels in G and let n, be the number of tasks in level :, then

We find

kept busy during the processing tim
P =

Sum of the fraction of P processors
e
total time required to process this job

L
i"l B_?-ﬂ in'
- 1 =_ . 2 2 b=
B P P P
25

117




and

-f Pm L?

4 o 2 M 2mP

g Thus,

L2
1+ —_QmP
R YW o TR ',‘,
S |pm, £

2 2mP

To find the pumber of processors that gives the maximum power, we take the partial derivative
of R with respect to P,

oR

P =0
- 1 7 Pm _ e -L’2m]
b pm . 12| |l 2  2mP]|(2mPy]
N ERE
2 L? Pm Lllm  -L2m
- [‘*w}’ [T + Tm?] [? + WJ
e - 1 “Pm+ L2 ) ( -1%)
Pm c 2 2Pm) | 2Pml
3 7 tImP
L2 V! L2
_ [l+2Pmllm-mP (5.2)
and we also need to show g’: <0.
» 2R - 1
.;: 4 F Pm L’
it P
N ]
Ln :‘
4




Ty E Al " LTS
| 202 2 e 2w 4 S ate e e e et el deb st Anh Aed Al Bafl Sndedi Bnd B L

-3
8

ip_ 8 2sp  Loay 3L 12 L0
mP"sszP‘m‘L *lP'+32mP’

ondrcc JEa l
o{
73

3L s s 1o 53
t mpP 8 mtp 32 miF -

Forl1<P< %, Equation (5.3) is less than zero.

Simplifying Equation (5.2}, we have

LPm L' L Pm LUm L L
m 8 4mP” smP* 2 4 2Pm  4m°P*

. m s 3mL? L L L

& R B L Ll =l

For any value of m aad L, we can numerically solve this equation for P and this is the
optimal number of processors required per job to achieve the maximum power.

If we are simply given an S versus p curve, we can find the optimal number of proces-
sors. First, we solve for P from the expression for p for a specific value of 2.

Pm Lz U Lz
2 tomp’ i ™0
mp' N L2 ’ -

2 P+ 2m(p 1)=0

NECiET
P = y
mp

-4
A1+ VI+LH(1-0) 7

mp o

We now substitute this P back into the expression for S, "'1
—

-\{

-~

I

b 2 ]
wfafats

LT




- s= M 1+\/1+L’p'(1-p')| + L?
- : me o LT EF 7))
- mp, j
1+V1+ L% (1-5) L
= Qpﬁ -+

[i](mfx T (-7
p

Interestingly, S is not a function of m when optimal number of processors are used. For
a specific utilization o we obtain the same S regardless of the value of the slope m.

As we know [KLEI79| the maximum power is achieved at the point where the S versus p
curve intersects a straight line from the origin approaching from the right (see Figure 5.8).

=

Figure 5.8 S versus o

From this method we can find the o’ at the intersection and substitute back into the expression
for P to obtain the optimal number of processors

1+V1 + L1 - 5)

mp’

P’ =

The S versus p curve does not start from p == 0 because the minimum p occurs when
P a= Bor




In addition, because no jobs can be finisbed in less than L normalized units of time, we have
S2L.

Figures 5.9-5.13 show some examples of the average system time versus utilization
curves for several values of L. Table 5.2 compares the optimal value of P’ solved from the
equation with the value calculated by using the p° obtained from the Figures 5.9-5.13.

exact solution with m == 1

20 [ 078 | 11.98 L+ 12.047
m_

30 | 076 | 18.23 % 17.824

10 | 076 | 2383 Tt; 23.504

50 | 0.75 | 30.232 -’1; 29.369

Table 5.2

The P”s obtained from Figures 5.9-5.13 theoretically should be the same as P*s calcu-
lated from the equation and they are very close to each other. But more interestingly is the fact

that P’ is approzimately equal to 0.6%. In other words, we should provide a number of proces-

sors for each job equal to six tenths of the number of levels L divided by the slope of the process
graph.

121




L=10

p = 0.82

el Lol

P
-’ :'I'c' SO

Ao a
DEPENTE |

.







ML g6 ol ot atuE RS st ek SNl e i adiare - st AP

P An AL aRA Al g 4

PSR 3 "

.
L)

"30 L
o .

versus p with L

ure 5.11 S

- e . - * a s a_ .

Fig




~30,

L gl B A Aeh Sl ik b B b ot Sel auch st Sd ot

1

1




el {
40,3& . _.,‘,L _SL__

Figure 5.13 S versus p with L == 50

oy et

AP PGP S ¥ ey ’

[P PR

...........




Substituting the value of P’into the expression for the average system time,

P'm+ L?
2 2mP*’

S =

we have an approximate average system time

. 061L L?
S= = *306)L

= 1.133 L

Note that if we do not care about the low utilization of processors, then, by using maximum
number of processors, the average system time is S == L. The slightly larger 5° is the trade off
between the utilization of processors and the average system time of jobs. Furthermore, we
note that the approximate concurrency measure is

S(P*)
=M

1.133 L
Lz

. m

- 2266 m
L

5.0 Bounds on the Average System Time with a Limited Number of Processors
(k. G°, 2, P < )

In this section, we limit the number of processors to a constant P. With a finite number
of processors, we have the problem of scheduling tasks. When more than one task demands a
processor and only one processor is available, we are forced to pick one task to be processed.
The method of selecting which task to be processed next in general effects the average system
time of the job.

R e AP o .
BRI IO P IR Y




s

DS R &

—

T Ty

'vavv.if

S v .
L. Sy Lt
P oo .

Assuming unit task processing times, a lower bound on the average system time can be
easily calculated as

Nk
SLB = max[L,—P—]

where L is the number of levels, /V is the number of tasks per process graph, k is the sumber of
jobs, and P is the aumber of processors.

A very loose upper bound can be obtained by using the Longest Expected Processing
Time First assignment algorithm [COFF76]. Assume P < k, and that we assign ouly one pro-
cessor to 3 job. Whenever a job is completed, the processor looks for another unstarted job to
process. Idled processors are not allowed to assist other jobs. Since only one processor works on
a single job, the structure of the random process graph does not influence the execution time.
Each job will take the same amount of processing time of N z units.

Let s = \.%l and ! = remainder of %, then an upper bound is

Sus = %[NP+ (2MP + - + (eMP + (a+1)Nt]

If we allow random tasks time, with the distribution F(t) and mean of X, and if we
require synchronization of P jobs (i.e. all P jobs must all finish before starting anotner P jobs),

then we bave the Longest Expected Remaining Processing Time First assignment algorithm
|COFF76] which gives

Son = [MP+ (M + MyP+ -
+(M+ M+ - +M)P

+(M+ M+ - +M,+M]i]%

where

N

and all M, have the same distridulion

132




. N
M= max |} X.,i

~ 118y

v
e
P
e

X, = random task time for task j of job i

From the Law of Large Numbers,

N

Y X,
lim Prob||=— -Xl < el =1 >0
N-—-on N

Hence,

\'g INY . e Y
im Pr b[s,,, _ NXP+ NP+ - - +NXP+ (:+1)N,Yy] -
)

k

or

i iNXP + (z + l)NXy]

lim Prob{ Syp = = - |

|25 + v
= ]
)

-ginQPro Syp = T

The bounds obtained in this section are very loose. The minimum average system time
is known to be achieved by the Shortest Expected Remaining Processing Time First (SERPT)
|COFF76] scheduling algorithm. But with random process graphs, we don't know the exact
structure of each process graph in order to apply the SERPT.

5.7 Discussion 73

In this chapter, we have attempted to observe some properties of the arrangements of
random process graphs. We found a method to construct all the arrangements of the tasks for a
process graph with /N tasks. The distribution of the number of arrangements with respect to the -
number of levels was shown to be Gaussian. The tail probability of this distribution was
bounded by the Chernoff bound. Next, an upper bound and a lower bound for the average sys-
tem time were obtained for a specific number of levels in a process graph. As N becomes large,

133




A et i M e et and g Bt s Jedh Sl Sad St Jodi gt e e S ar S D mad o R DS B R

.

the probability that the average system time of a randomly chosen process graph is between the
upper bound and the lower bound calculated near the mean number of levels approaches one.

The number of precedence relationships and the number of levels were added to the
model pext. The bouands for this case were found and compared to the previous bounds.

We used the notion of power to study the trade off between the utilization of the pro- -
' cessors and the average system time. A very loose upper bound was presented for the case 73
= where the number of processors is Gnite.

ey
.- PR

et it I I
0

e vy o

‘e ate s
, 2o fs fa f

AR RO ES B
[ [} " " Py l

oo

[

A R

[~ |

134

ol Latalatales

3
B
.
"
)
7/
s
5
.
v,
A
7’
o

----

.
"a’a




'.l"“'
O

-
1]

-

WTTE TN TETN T YL v v

CHAPTER 6
Process-communication Graphs

In the previous two chapters, we have assumed that the cost of sending data between
processors is free and that the communication between them can be achieved instantaneously.
In reality, there is always some delay occurred when communicating between the processors.

Gentleman [GENT78| found that in a multiprocessor eavironment, even though data
paths are provided to move data between processors, data from one processor is only immedi-
ately available to a small number of other processors, and in general, moving data from one pro-
cessor Lo another requires several submoves. Gentleman uses the matrix multiplication on
ILLIAC IV, where processors are connected in a two dimensional rectangular grid, as an exam-

ple. For the multiplication of two N by N matrices, at least l—l;i--:-] - %— data movements are

tequired. Hence, we cannot ignore the communication cost in general.

To minimize the communication cost, we will try to assign as many tasks as possible on
a processor. Of course, there will be no communication cost if all the tasks are assigned to a
single processor. On the other hand, we are looking for maximum concurrency which will tend
to use as many processors as possible to execute the tasks. A compromise must then be made to
balance between these two opposing objectives. Consequently, we can no longer assume that
there are an infinite number of processors. With a limited number of processors, the need for
task assignment comes back.

In this chapter, we still use the process graph discussed in Chapter 3. Except, we will
add in the communication tasks that represent the communications required between the proces-
sors. We will look at how the number of processors will affect the average system time and bhow
we can obtain the average system time by comverting the process-communication graph into a
Markov Chain (similar to Algorithm CPM in Chapter 4, but with some differences due to the
limited number of processors). We do not address the task assignment problem specifically.
Instead a simple rule of thumb is used in deciding which processor a task should reside in and
where the communication tasks are added in the process graph.

135




haieiiel Sk T Shai Sl i Sl S Shdl S e A il

8.1 Communication Tasks (¢, G, 2, P < )

We have assumed in Chapters 3, 4 and 5 that the tasks in a process graph may be
assigned to any processors and that there is no communication cost of passing data between
tasks due to the contention on the communication bus or the physical distance between any pair
of processors. In this section, we explore a way to represent this communication cost in the

model discussed in Chapter 4.

We assume that the process graph is fixed and that the task service time is exponen-
tially distributed with a mean of -‘l‘— sec. If each task is residing on a different processor, then

. there exists a communication delay between any two tasks il there is a precedence relationship
;4 between them. We will treat this communication cost as another task whose service time is

exponentially distributed (with 2 mean of “L sec.). For example, Figure 6.1b is the process
= ¢

graph obtained when we add communication tasks to the process graph of Figure 6.1a.

—.l

nl
W

4

Figure 6.1a Process Graph -

’1
A communication task S, represents the communication between a processor where task i is
residing and a processor where task j is residing. We will call the process graph with the com- .
munication tasks added the "process-communication graph”. “

Of course, il a task ¢ has several subtasks &, & - - , l,, where a > 2, we can assign
one of the subtasks on the same processor where task ¢ was executing. We assume for now that
the subtask selected to reside on the same processor with task ¢ is picked at random, and when
two tasks reside on the same processor, the communication cost between these two tasks is zero.

poan b ettt a0



- (. - .-'.“‘ .

Figure 6.1b Process-communication Graph

In the example shown in Figure 6.1b, we can let tasks 1 and 2 reside on one processor
and let tasks 3 and 4 reside on another processor. The resulting process-communication graph is

shown in Figure 6.2.

Since the communication task is treated just like a regular task, we see that there could
be concurrent execution of regular tasks and 3 communication task. If we assume multiple com-
munication busses, then more then one communication task could execute in parallel also. In
Section 6.3, we will examine the case when only one commuanication task is allowed to execute

at any given time.

The exact communication time requirement depends upon the access protocols, the com-
munication bandwidth, the volume of data to be transmitted and the physical locations of the
processors requiring the communication. Lee [LEET77], discussed in Section 2.3.6, approximated
the communication cost by multiplying the volume of data to be transmitted by the distance of
the two processors. His method assumed that the volume of data transmitted between two pro-
cessors is fixed and the distance between two processors is a constant multiplied by the number
of hops or a linear function of the physical distance.

In this chapter, we let u. w= au where a is a real number greater than zero. If a > |,

the commuaication task takes less time on the average than the regular task. In particular,
when & = 00, communication cost is then zero.

137

- Rd v . '.h Rt ‘| e .\ M -~ - ... - R * . . "
WL S S A AT N AT TS NN e
B N A I AR PR AP W S . g S W P R S I,

)

.

e, e

.
PTG Y W I

. .-, s

c s PR 2% WA A
j ‘.-.'; patet

o
e, 0 b

.
‘.
"
"
.
-




o e SRS Sl gl Ty gh g J0 At saail i S -~

Figure 6.2 Process-communication Graph

Using Algorithm CPM (Section 4.2.2), we can convert a process-communication graph
into a Markov Chain to solve for the average system time. Figure 6.3 is the Markov cbain for
the process-communication graph of Figure 6.2. Recall that C, is a state where all the tasks in
a are executing concurrently.

We wish to solve for the a such that the resulting average system time equals to
S{P = 1). We denote such & as a,, Note that with s == a,, the concurrency measure o equals
one. This will allow us to separate out those systems which yield a net improvement whean
parallel processing is introduced.

Using the balance equations and the fact that the sum of all equilibrium state probabili-
ties equals to one, we obtain the expression for s, for the example shown in Figure 6.3 as

3+9a,+74% 1

=1 S,) - 26,+2¢ 4
SP = 1) L
B

Solving for s, we get a, = 2.3027. In other words, if u, > 2.3027u, for the job represented by
Figure 6.1a, multiprocessing is still faster than the single processor (even with the communica-

tion delay). But if g, € 2.30274, then it is better to process this job on a single processor.

138

M JenA Janih odnd Jenh S

PR
,_

1 Tem JOR J
‘!l




Figure 6.3 Markov Chain of Figure 6.2



CALJMENJ S G0 S0 eone Iua s Sie s bt B et A eed i A At SEnh Jgh Sedh - S ARdl el et Nl G AL B on it -4 AR atdh D SEe S A aad ohl ot aad an R ot ok o

6.2 Limited Number of Processors Per Job (£ G, 2. P < o)

If there are limited number of processors and the number of processors, P, assigned to a
job G is smaller than the width of G, then the scheduling of tasks to processors is required.
Whenever there is more than one task waiting for an available processor, we must consider the
commupnication costs when deciding which task should be processed on this processor. [f the
available processor does not have the data necessary for executing a task, the data must be
transmitted from another processor. Thus, we have a difficult optimization problem of assigning
tasks to the processors. In this section, we discuss some simple rules of thumb in assigning
tasks. These rules most likely will not produce the best assignment in terms of minimizing the
average system time, but it provides a basis for analyzing the effect of having different number :
of processors for a specific process graph. -

The rules of thumb for assigning tasks to processors are

1. For a task i, if there is only one task j such that there is a precedence relationship (1),
then assign task j to the same processor where task ¢ is processed.

2. For a task i, if there is a set of tasks a such that there is a precedence relationship (i)
where j ¢ a, and there is only one available processor, assign all the tasks a to the same
processor where task i is processed.

3. For a task i, if there is a set of tasks a such that there is a precedence relationship (i)
where j ¢ a, and there is more than one processor available, supposing there are P’ pro- -
cessors and z tasks in the set a, then

i for z < P’ .
assign one task j ¢ a to the processor where task ¢ is processed, create one com- K
munication task for each of the z-1 tasks and assign each of them to a separate .
processor.

il. forz> P’ .
assign (2-F +1) tasks to the processor where task i is processed, create (P’ -1)
communication tasks and assign the rest of the tasks to each of the (P' -1) pro-

cessors.
4. For a task 4, if it has only one edge (i, j) leaving it and task j has been assigned to
another processor p, then create a communication task to transfer the data to processor

p.

Figures 6.4-6.6 show a simple example of the task assignment.




4

Figure 6.4 Process Graph

Figure 6.5 Process-communication Graph with P == 2

'-',"'.'j."-"-"" ¥ l,.'. SRV
s

>



" - g T " ad
I T Ty T Ty T Ty oy LAt Ak A Aot dint it

Figure 6.6 Process-communication Graph with P = 3

Figure 6.4 is the original process graph. Figure 6.5 shows the assignment for the P = 2 case,
and Figure 6.6 shows the assignment for the P == 3 case. In Figure 6.5, tasks 1, 2 and 4 reside
on one processor while tasks 3 and 5 reside on the other processor. In Figure 6.6, tasks 1 and 2
reside on the first processor; tasks 3 and 5 reside on the second processor; task 4 resides on the
third processor. If we draw circles around the task assignments in the original process graph of
Figure 6.4, any precedence relationship that connects tasks across these circles indicates that a
communication task is required.

When the communication cost is assumed to be zero (s == c0), we expect the uS versus
P figure to look like Figure 6.7. When Pm 1, uS== N where N is the number of tasks in the

process graph, and as P increases, the value of uS will spproach N° where L:— is the average

system time S (P == oo} obtained in Chapter 4.

142




m Py T W U T WY T YT T W T T e e s,

BN

Figure 6.7 4S5 versus P

In general as the cost of the communication increases (smaller a), the average system
time will increase also. Figure 6.8 is a typical example of a family of curves for uS versus P.
For a specific value of P, let us say P’ there will be a specific 4 = 8, such that the value of uS
at these values of a, and P’ equals to N. In other words, the advantage of muljtiprocessing on

P’ processors is erased by the communication cost (with mean time of 717 ) between proces-
- s

sors. As a becomes smaller than a specific a’, the communication cost becomes too large for any
multiprocessing at all, and the normalized average system time is greater than N,

Figures 6.9-15 show an example of the process graph (Figure 6.9), the process.
communication graphs with various values of P, P == 2,3,4,5,6, (Figures 6.10-14), and the result-
ing family of uS curves versus P (Figure 6.15). Of course these process-communication graphs
are for a specific assignment of tasks to processors. But the behavior of the curves is likely to
be similar for all other assignments.

For some of the curves, a horizontal line intersects the uS curve at two points as in Fig-
ure 6.16. This implies that the average system time is the same whether we use P, processors or
P, processors. We are interested, then, in the issue of efficiency of the processors. Since
Py, > P), and in both cases the same amount of work is completed in the same average system
time, the P, processors must be idling more (waiting for the communication tasks to complete).

143




il Sl gl JRei

. @ increasing

i Figure 6.8 u S versus P with a Family of o
e .

T 144

: R A S
. )

y . P e e
[ILY P P P N

BRI NN




o
34
S0

Figure 6.9 A Process Graph

145




O
®
®
&
O
(®
()
@

Figure 6.10 Process-communication Graph with P = 2
v o

146

. a‘l'l",!

oo
a

’
i’

i G W NN




——yy el 2o 109
- m‘—fr:v,'*.'('y L Al A el rahdr A RN
AB D AR S ORI [ fav B o et AL NN A

E A e e el S R L i

(DD
(D
Oa0a0a0n0a0n6

(D=

Figure 6.11 Process-communication Graph with P = 3




O ® & ;;
® O G & :
& OO ®

Figure 6.12 Process-communication Graph with P = ¢ S

NN

148




ROV A st A s e e e in et AU AL AN LRCIMIN

@O & &® &
&) &
O ®

[ S
e

Figure 6.13 Process-communication Graph with P == §

]
Y

oo
St
‘A " L

Pl

.-
L]
)




DASRAAR AN AR e ) Sa e Jiva (R i e e h S St i ol 2l 3 AU Al St S et St A Aot Jb o 4

Figure 6.14 Process-communication Graph with P = 6




r' ‘. '-l".

ol ol J &
|
1

al
¥
-

|
I
1

-l
T
1

| { ]
1 2 3 4 $
P
Figure 6.15 uS versus P

181

LT TR

s 20 2 I e "

PR




N g : - PR - . ' Iy ?
. [P . T VI AR A A ) goo et N Jelel el el T Tal e g R NDE

Lofadl S A 4

la

TTWr—w

AR I S Ay

A AL

-

P2

Figure 6.16 u S versus P with a specific value of u$*
152

4 ..., ..... |.....‘..
.- = v LINUT I 0 e s e oL e e | ete e e T R N A
e ORI ,’- I LT el et e AN




Let us denote the average system time when P == 1 to be §5; and the average system
time with P processors and with u, == au to be Sp(a). The total work to be done is constant

and equals NV % second which is also S;. Let n denotes the efliciency of the processors where n

is defined to be which is the total useful work done divided by the time necessary for

__S‘_
P Sp (d)
the P processors to process this amount of useful work multiplied by P. If we define

—~——— == (|4}, where Cla) is a constant for a specific s, then
Sp (a)
Qe
n - 5

Therefore, we can see the trend that the effliciency of the multiprocessors decreases as
the number of processors increases.

6.3 One Communleation Bus (£, G, z°, P < o)

In the last two sections, we have assumed that there is more than one commuanication
bus such that whenever a processor needs to send data to another processor, it will be transmit-
ted without having to wait for a communication channel. In this section, we assume that there
is only one communication bus such that only one processor may be transmitting at any given
time. We also assume that communication tasks are perfectly scheduled such that if there is
more than obe communication task required to be transmitted, then each of them will be
transmitted in turs and each of them knows who is to be transmitted next (no collisions).

To obtain the average system time, we again convert the process-communication graph
into a Markov chain. The states of the Markov chain are represented as C, D, where the set a
contains tasks to be executed in parallel, and the set A contains all the communication tasks
waiting to be transmitted. If the set g is not empty, then one of the tasks in a must be a com-
munication task. After the communication task in a finishes, we can activate one of the tasks
in 8. The conversion algorithm is same as Algorithm CPM of Section 4.2.1, with the
modification that each time a task { completes the execution, we add the following two tasks:

1. as the result of the completion of task i, if there is a set of communication tasks becom-
ing active, concatenate them into the set 3

2. if task i was a2 commuaication task, and if the set 3 is not empty, bring one of the task

in set 9 into the set a.

153

e, 0.‘.-'- » AT

D B 4
25 4t

. . -
Wt e T e
PP S Ry

e
dendind

1 €.,
ot
PR oYY



e
»
.

)
g

After the Markov chain is constructed, we can solve for the equilibrium state probabili-
ties and the average system time using the same method studied in Chapter 4. We expect that
the average system time with one communication bus is greater than the multi-communication
busses because of the delay caused by the non parallel processing of the commuasication tasks.

For example, Figure 6.18 is oue of the Markov chains that can be converted from the
process communication graph of Figure 6.17 where tasks 3, 4, 5, and 8 are the communication
tasks. After the task 2 in the state C,y D, completes, the communication task S is concatenated
to the set 5, communication task 4 cannot be moved to the set a because task 3 is a communi-
cation task and there is only one communication bus available; after the communication task 3
ib the state C,y D, completes, one of the communication tasks in the set 4 can be activated, and

task 6 can also start execution (since it has received the information from the communication
task 3.)

Figure 6.17 A Process Communication Graph

154




11
R ﬂ‘ PO OO
. . .
_r.....f-\.\.\.\.h Vet e

158

Figure 6.18 Markov Chain Generated from Figure 6.17




6.4 Discussion

In this chapter, we added the communication overbead to the process graphs. This
overhead is represented as new nodes in a process graph. The resulting graph is called the
process-communication graph and it may be converted into a Markov Chain to obtain the aver-

age system time.

When the number of processors is limited to P, we presented some rules of thumb on
how tasks should be assigned to processors and where communication tasks must be added.

This assignment was by no means the ‘optimal’ assignment. It was used so that we could
analyze the processor communication graph and study a few facts regarding it. For example, we

found the behavior of the uS curve when plotted against P and how it behaves when the param-
p eter g increases. We also found the efliciency of the P processors which worked on a job.

Finally, we studied the communication problem when only one communication bus is

allowed. The difference between this case and the two previous cases was when converting a

process-graph into a Markov Chain, we cannot let more than two communication tasks to be

executed at the same time. The additional communication tasks were kept in a first come frst

served queue.




References

|ABDE78] Abdel-Wahab, H.M., ad T. Kameda, 'Scheduling to Minimize Maximum Cumulative
Cost Subject to Series-Parallel Precedence Constraints,” Operations Research, Vol.
26, No. 1, pp. 141-158, January-February 1978.

[AMDA67] Amdahl, G.M., 'Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities,” AFIPS Conference Proceedings, Vol. 30, pp. 483-487,
1967.

(AVIZ81] Avizienis, A., 'Fault Tolerance by Mesas of External Monitoring of Computer Sys-
tems,” AFIPS Conference Proceedings, Vol. 50, pp.27-40, 1981.

[BAERGS| Baer, J.L., and D.P. Bovet, 'Compilation of Arithmetic Expressions for Parallel Com-
putations,’ Proceedings of IFIP Congress, pp. 340-346, 1968.

|BAERG9| Baer, J.E. and G. Estrin, 'Bounds for Maximum Parallelism in s Bilogic Graph Model
of Computations,’ /[EEE Transactions on Computers, Vol. C-18, No. 11, pp. 1012-
1014, November 1969.

|BAER70| Baer, J.L., D.P. Bovet, and G. Estrin, Journal of the Association for Computing
Machinery, Vol. 17, No. 3, pp. 543-554, July 1970.

{BAKE?78| Baker, Kenneth R., and Linus E. Schrage, 'Finding an Optimal Sequence by Dynamic
Programming: An Extension to Precedence-Related Tasks,” Operations Research,
Vol. 26, No 1, pp. 111-120, January-February 1978.

[BARNGS| Barnes, G., R. Brown, M. Kato, D. Kuck, P. Slotaick, and R. Stoker, IEEE Transac-
tions on Computers, Vol. C-17, No. 8, pp. 746-757, August 1968.

[BEATT72| Beatty, J.C., 'An Axiomatic Approach to Code Optimization for Expressions,’ Journal
of the Association for Computing Machinery, Vol. 19, No. 4, pp. 613-640, October
72.

157




...... T T—p—

[BOVEG68| Bovet, D.P., 'Memory Allocation in Computer Systems,’ Ph.D. dissertation, Dep.
Eag., University of California, Los Angeles, 1968,

{BRUN?4| Bruao, J., E.G. Collmag, Jr., and R. Sethi, 'Scheduling Independent Tasks to Reduce
Mean Finishing Time,' Communications of the ACM, Vol. 17, No. 7, pp. 382-387,
July 1974.

[BRUNS1| Bruno, J., P. Downey, and G.N. Frederickson, Flow Time or Makespan,’ Journal of
the Association for Computing Machinery, Vol. 28, No. 1, pp. 100-113, January
1981.

[BUX81] Bux, W., et al, 'A Reliable Token Ring System for Local Area Communication,’
National Telecommunication Conference, pp. A2.2, 1981.

[CACET9| Capetanakis, J.I., 'The Multi-Access Tree Protocol,’ I[EEE Transactions on Communi-
cations, Vol. COM-27, pp.1476-1484, October 1979.

[COFF76] Coflman, E.G., Computer and Job-shop Scheduling Theory, John Wiley and Sons,
1976.

[COFF79] Cofimaa, E.G., Jr., and Kimming So, 'On the Comparison Between Single and Multi-
ple Processor Systems,’ Department of Computer Science, University of California,
Santa Barbara, August 1979.

|COHNT7S8] Coba, Harry, and Anthony Pakes, 'A Representation for the Limiting Random Vari-
able of a Branching Process with Infinite Mean and Some Related Problems,' J.
Appl. Probd., Vol. 15, pp. 225-234, 1978.

(DEMPS81| Dempster, M.A.H., et al, 'Analytical Evaluation of Hierarchical Planning Systems,’
Operations Research, Vol. 29, No. 4, pp. 707-716, July-August 1981.

|DHAL78| Dhall, Sudarshaa K., and C.L. Liu, 'On a Real-Time Scheduling Problem,’ Operations
Research, Vol. 26, No. 1, pp.127-140, January-February 1978.

{DODI81| Dodin, Bajes, and Naman, 'Random Network Generation,” University of N. Carolina,
OR Report No. 179, June 1981.

[ELDES0] El-Dessouki, Ossama 1., and Wing H. Huen, 'Distributed Enumeration on Between
Computers,’ IEEE Transactions on Computers, Vol. C.29, No. 9, pp. B18-825, Sep-
tember 1980,

158

e )
‘aeanata d o o Y

‘s

e g e,

a2

¢ .
‘.
‘a




|[ENSL?7] Easlow, Philip, Jr., "Multiprocessor Organization - A Survey,’ Computing Surveys,
Vol. 9, No. 1, pp. 122-126, March 1977.

|[ESTR63] Estrin, G., and R. Turn, 'Automatic Assignment of Computations in a Bariable Struc-
ture Computer System,' [EEE Transactions, Vol. EC-12, pp. 756-773, December
1963. [FELL67| Feller, William, An Introduction to Probabilisty Theory and Appli-
cations, Wiley, 1967.

[FERN72| Fernandez, E., 'Activity Transformations on Graph Models of Paraliel Computa-
tions,' Ph.D. Dissertation, Computer Science Department, University of California,
Los Angeles, October 1972.

[FORD62| Ford, L.R., and D.R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

|[FOSC81] Foschini, G.J., B. Gopinath, and J.F. Hayes, 'Optimum Allocation of Servers to Two
Types of Competing Customers,’” [EEE Transactions on Communications, Vol.
COM-29, No. 7, pp. 1051-1055, July 1981.

[GALL68| Gallager, R., Information Theory and Reliable Communication, John Wiley & Sons,
New York, 1968.

[GENT78] Gentleman, W. Morven, 'Some Complexity Results for Matrix Computations on
Parallel Processors,” JACM, Vol. 25, No. 1, pp. 112-115, January 1978.

[GITT77] Gittins, J.C., and K.D. Glazebrook, 'On Bayesian Models in Stochastic Scheduling,’ J.
Appl. Prob., Vol. 14, pp. 556-565, 1977.

|GITT79] Gittins, J.C., 'Bandit Processes and Dynamic Allocation Indices,’ J. R. Statist. Soc.
Ser. B, Vol. 41, No. 2, pp. 148-177, 1979. |[GLAZ76] Glazebrook, P. Nash, 'On
Multi-server Stochastic Scheduling,’ J. R. Statist. Soc. Ser. B, Vol. 38, No. 1, pp.
67-72, 1976.

|GLAZ80] Glazebrook, K.D., 'On Stochastic Scheduling with Precedence Relations and Switch-
ing Costs,' J. Appl. Prob., Vol. 17, pp. 1016-1024, 1980.

|GLAZ81] Glazebrook, K.D., aad J.C. Gittins, 'On Single-Machine Scheduling with Precedence
Relations and Linear or Discounted Costs,’ Operations Research, Vol. 29, No. 1,
pp. 161-173, January-February 1981.

|GONZ72| Gonzalez, Mario J., and C.V. Ramamoorthy, 'Parallel Task Execution in a Decentral-
ized System,' [EEE Transsctions on Computers, Vol. 21, No. 12, pp. 1310-1322,
December 1972.

159

P T
. Poao © .
o N e

.
Vo
48




RIS M 2 i e a0 A i St T A S et et A A et S A A i o S i O E S A AN AN AP NN AR A E L AT AN AR

8
L‘._
.

[GOTT82] Gottlieb, Allan, and J.T. Schwartz, 'Networks and Algorithms for Very-Large-Scale
Parallel Computation,” Computer, Vol. 15, No. 1, pp.27-36, January 1982,

[HARRG63| Harris, Theodare E., The Theory of Branching Processes, Prentice-Hall, 1963.

|HASE?S5| Hasen, P. Brian, 'The Programming Language Concurrent Pascal,” JEEE Transactions
on Software Engineering, Vol. SE-1, No. 2, pp. 199-207, June 1975.

[HASE77| Hansen, P. Brian, The Architecture of Concurrent Programs, Prentice-Hall, Engle-
wood Cliffs, N.J., 1977. '

[HAYNS82| Haynes, Leonard S., 'Highly Parallel Computing,’ Computer, Vol. 15, No. 1, pp. 7-8,
January 1982.

[HOFR78| Hofri, M. and C.J. Jenny, 'On the Allocation of Processes in Distributed Computing
Systems,’ IBM Research Report RZ905, April 1978.

[HOLT78| Holt, Graham, Lazowska, and Scott, Structured Concurrent Programming unth
Operating System Applications, Addison Wesiey, Reading, Massachusetts, 1978.

|HORO76] Horowitz, Ellis, and Sartaj Sabni, 'Exact and Approximate Algorithms for Scheduling
Nonideatical Processors,’ Journal of the ACM, Vol. 23, No. 2, pp. 317-327, April
1976.

[[BAR77| Ibarra, Oscar H., and Chul E. Kim, 'Heuristic Algorithms for Acheduling Independent
Tasks on Nonidentical Processors,’ Journal of the ACM, Vol. 24, No. 2, pp. 280-
289, April 1977.

|JAFF80] Jafle, Jefirey, ‘Bounds on the Scheduling of Typed Task Systems,’ SIAM J. Comput.,
Vol. 9, No. 3, pp. 541-531, August 1980.

{JENN77] Jemny, C.J., 'Process Partitioning in Distributed Systems,’ Proceedings of National
Telecommunications Conference, pp. 31:1, 1977. =

[KELL73a] Keller, Robert M., 'Parallel Program Schemata and Maximal Parallelism 1. Funda-
mental Results,” JACM, Vol. 20, No. 3, pp. 514-537, July 1973.

|KELL73b| Keller, Robert M., 'Paralle] Program Schemata and Maximal Parallelism II: Con- :
struction of Closures,’ JACM, Vol. 20, No. 4, pp. 696-710, October 1973.

Bk oad.

Ig !

160

oTAl ALy

o
1
s
.
.
’
‘s v




SAAAAASE RSy

|[KIES81| Kiesel, W., and P.J. Kuehn, 'CSMA-CD-DR: A New Multi-Acess Protocol for Distri-
buted Systems,’ National Telecommunication Conference, pp. A2.4, 1951.

(KLEI7S] Kleinrock, L., Queueing Systems, Vol. I: Theory, John Wiley & Sons, New York, 1975.

[KLEI79| Kleinrock, L., 'Power and Deterministic Rules of Thumb for Probabilistic Problems in
Computer Communications,’ Conference Record, International Conference on
Communications, pp. 43.1.1-43.1.10, June 1979.

[KNUT73b| Kauth, Donald, The Art of Computer Programming -- Sorting and Searching,
Addison-Wesley, Reading, Massachusetts, 1973.

[KOZD80] Kozdrowicki, Edward W., and Douglas J. Thies, ‘Second Generation of Vector Super-
computers,’ Computer, Vol. 13, No. 11, pp. 71-83, November 1980.

[KUCK?2] Kuck, David, et al, 'On the Number of Operations Simultaneously Executable in
Fortran-Like Programs and Their Resulting Speedup,” /EEE Transactions on
Computers, Vol C-21, No. 12, pp. 1293-1310, December 1972,

[KUCKT4] Kuck, D., et al, 'Measurements of Parallelism in Ordinary FORTRAN Programs,’
Computer, pp. 37-46, Jaauary 1974.

[KUCKT77| Kuck, David J., 'A Survey of Parallel Machine Organization and Programming,’
ACM Computing Surveys, Vol. 9, No. 1, pp. 20-59, March 1977.

|[KUNGS82] Kung, H.T., "Why Systolic Architecture,’ Computer, Vol. 15, No. 1, pp. 37-46, Janu-
ary 1982.

[LAM74| Lam, Simon S., 'Packet Switching in a Multi-Access Broadcast Channel with Applica-
tion to Satellite Communication in a Computer Network,’ Ph.D. dissertation,
Computer Science Department, University of California, Los Angeles, April 1974.

[LANS78| Lenstra, J.K., and A.H.G. Rinnooy Kan, 'Complexity of Scheduling under Precedence
Constraints,’ Operalions Research, Vol. 26, No. 1, pp. 22-35, January-February
1978.

(LEE77| Lee, Robert P., 'Optimal Task and File Assignment in a Distributed Computing Net-
work,' PhD dissertation, Computer Science Department, University of California,
Los Angeles, 1977.

161




[LELA77) Le Laon, Gerald, 'Distributed Systems - Towards a Formal Approach.’ IFIP Congress
Proceddings, pp. 155-160, 1977,

[LELA82| Leland, Will E., and Marvin H. Solomon, ‘Dense Ttivalent Graphs for Processor Iutet-
connection,” IEEE Transactions on Computers, Vol. C-31, No. 3, pp. 219-222,
March 1982,

[LITT61] Little, J., 'A Proof of the Queueing Formula L == \W,' Operations Research, Vol. 9,
No. 2, pp. 383-387, March 1961.

[LIU73] Liu, C.L., and James W. Layland, 'Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Eavironment,’ Journal of the ACM, Vol. 20, No. 1, pp. 46-61,
Jamuary 1973.

|[MAKAS81] Makam, S., 'Design Study of a Fault-Tolerant Computer System to Execute N-
Version Software,” Ph.D. Dissertation, UCLA Computer Science Department, June
1981.

[MART66] Martin. David F., 'The Automatic Assignment and Sequencing of Computations on
Parallel Processor Systems,’ Ph.D. dissertation in Engineering, University of Cali-
fornia, Los Angeles, 1966.

[MART®67a] Martin, David, F., and G. Estrin, 'Experiments on Models of Computations and
Systems,’ [EEE Transactions, Vol. EC-16, pp. §9-69, February 1967.

|MART67b] Martin, David F., and G. Estrin, 'Models of Computational Systems - Cyclic to
Acyclic Graph Transformations,' /[EEE Trasnactions on Electronic Computers,
Vol. EC-186, No. 1, pp. 70-79, February 1967.

{MART67¢] Martia, David F., and G. Estrin, 'Models of Computations and Systems - Evalua-
tion of Vertex Probabilities in Graph Models of Computations,” J. ACM, Vol. 14,
pp. 281-299, April 1967.

[MART69] Martin, David F., and G. Estrin, 'Path Length Computations on Graph Models of
Computations,” [EEE Transactions on Computers, Vol. C-18, No. 6, pp. 530-536,
June 1969.

[METC76] Metcaife, R.M., and D. R. Boggs, 'Ethernet: Distributed Packet Switching for Local
Computer Networks,” Communication of the ACM, Vol. 19, No. 7, July 1976.




[MILL73| Miller, Raymond E., 'A Comparison of Some Theoretical Models of Parallel Computa-
tion,” JEEE Transactions on Computers, Vol. C-22, No. 8, pp. 710-717, August
1973.

[MOLLS1| Molloy, Michael K., 'On the Integration of Delay and Throughput Measures in Distri-
buted Processing Models,” Ph.D. dissertation, Computer Science Department,
University of California, Los Angeles, 1981.

[MORR61| Morrison, P., and E. Morrison, Charies Babbage and his Caiculating Engines, Dovers,
Ine., N.Y., 1961.

[MUNT69] Muntz, Richard R., and E.G. Coffman, Jr., 'Optimal Preemptive Scheduling on
Two-Processor Systems,’ [EEE Transactions on Computers, Vol. C-18, No. 11,
pp.1014-1020, November 1969.

[MURAT1] Muraoka, Y., 'Parallelism Exposure and Exploitation in Programs,’ Ph.D. disserta-
tion, University of lllinois at Urbana-Champaign, Department of Computer Sci-
ence, Report 71-424, February 1971.

[NG80] Ng, Y.W., and A. Avizienis, 'A Unified Reliability Model for Fault Tolerant Computers,’

IEEE Transactions on Computers, Vol. C-29, No. 11, pp. 1002-1011, November
1980.

[OUST80] Ousterhout, John K., Donald A. Scelza, and Pradeep S. Sindhu, Communications of
the ACM, Vol. 23, No. 2, pp. 92-105, February 1980,

[PAKET76] Pakes, A.G., 'Some Limit Theorems for a Supercritical Branching Process Allowing
Immigration,’ J. Appl. Prob., Vol. 13, pp. 17-26, 1976.

[PAPOGS| Papoulis, Anthanasios, Probability, Random Varisbles, and Stochastic Processes,
McGraw-Hill, 1965.

[PARRS3| Parrella, Michael, 'All Nodes Are "Equal” in Distributed Data Processing,’ System &
Software, p. 83, June 1983,

[PETES81] Peterson, James L., Petri Net Theory and the Modeling of Systems, Prentice-Hall,
1981.

[POPES1| Popek, G., B. Walker, J. Chow, D. Dewards, C Kline, G. Rudisin, and G. Thiel,
"Locus: A Network Transparent, High Reliability Distributed System,' Proceedings

of the Eighth Sysmposium on Operating Systems and Principles, pp. 169-177,
December 1981,

163

-

.« AL
e, Ve )
LN PO I

NN
Py

P hd
Sl .
el e rm L

»
Ben




[POTTS3| Potter, J. L., 'Image Processing on the Massively Parallel Processors,” Computer, Vol.
16, No. 1, pp. 62-67, January 1983.

[PREPS81]| Preparata, Franco P. and Jean Vuillemin, 'The Cube-Connected Cycles: A Versatile
Netwrok for Parallel Computation,” CACM, Vol. 24, No. 5, pp. 300-309, May
1981.

|[PRICS81] Price, Camille C., 'The Assignment of Computational Tasks Among Processors in a
Distributed System,” NCC, pp. 291-296, 1981.

[PRICS83] Price, Camille C., 'Task Assignment Using A VLSI Shortest Path Algorithm,’ Depart-
ment of Computer Science, Austin State University, Nacogdoches, Texas, April
1983.

[RAMA69] Ramamoorthy, and M.J. Gonzalez, 'A Survey of Techniaues for Recognizing Parallel
Processable Streams in Computer Programs,’ AFIPS, FJCC, pp. 1-5, 1969.

|[RAMA72] Ramamoortby, C. V., K. M. Chaady, and Mario J. Gonzalez, Jr., 'Optimal Schedul-
ing Strategies in a Multiprocessor System,” JEEE Transactions on Computers, Vol.
C-21, No. 2, pp. 137-146, February 1972,

[RAMAS80] Ramamoorthy, C. V. and Gray S. Ho, 'Performance Evaluation of Asynchronous
Concurrent Systems Using Petri Nets,’ JEEE Transactions on Software Engineer-
ing, Vol. SE-6, No. 5, pp. 440-449, September 1980,

[RAMI?9] Ramirez, R.J., and N. Santoro, 'Distributed Control of Updates in Multipie-Copy
Databases: A Time Optimal Algorithm,’ Proceedings of the Fourth Berkeley
Conference on Distributed Data Management and Compuler Netwrok, pp. 191-234,
1979,

|[RAO79] Rao, Gururaj, Harold Stone, and T.C. Hu, 'Assignmeant of Tasks in a Distributed Pro-
cessor System with Limited Memory,' I[EEE Transactine on Computers, Vol. C-28,
No. 4, pp. 291-299, April 1979.

[ROBI79] Robison, J.T., 'Some Analysis Technique for Asynchronous Multiprocessor Algo-
ritbms,’ JEEE Trans. Software Eng., Vol. SE-5, pp.24-31, January 1979.

|[ROSES3] Rosenfeld, Azriel, 'Parallel Image Processing Using Cellular Arrays,’ Computer, Vol.
16, No. 1, pp. 14-70, January 1983.

164




Al O S S & - ¢ =
O BPE .
Ve le e e S

|[RUSHS83] Rushby, John, and Brian Randell, 'A Distributed Secure System,’ Computer, Vol. 16,
No. 7, pp. 55-67, July 1983.

[RUSS69| Russell, E.C., 'Automatic Program Analysis,’ Ph.D. dissertation, Dep. Eng., University
of California, Los Angeles, 1969.

[SAHNT6a} Sabni, Sartaj K., 'Algorithms for Scheduling Independent Tasks,’ JACM, Vol. 23,
No. 1, pp. 116-127, January 1976.

[SAHNT6b]| Sabai, Sartaj, amd Teofilo Gonzalez, 'P-Complete Approximation Problems,’ JACM,
Vol. 23, No. 3, pp. 555-565, July 1976.

[SCHES83] Schell, Roger R., 'A Security Kernel for 2 Multiprocessor Microcomputer,” Computer,
Vol. 16, No.7, pp. 47-53, July 1983.

[SCHUS1| Schumaa, Stephen A., aod Edmund M. Clarke, Jr., 'Programming Distributed Appli-
cations in ADA: A First Approach,’ Proceedings of the 1981 International Confer-
ence on Parallel Processing, pp. 38-49, 1981.

[SEDG78| Sedgewick, R., 'Implementing Quicksort Programs,” CACM, Vol. 21, No. 10, pp. 847-
857, October 1978.

[SENET73] Seneta, E., 'The Simple Branching Process with Infinite Mean,’ J. Appl. Prob., Vol.
10, pp. 206-212, 1973.

[SENET74] Seneta, E., 'Regulaly Varying Functions in the Theory of Simple Branching
Processes,” Adv. Appl. Prod., Vol. 8, pp. 408-420, 1974.

[SEVCT74| Sevcik, Kenneth C., 'Scheduling for Minimum Total Loss Using Service Time Distri-
butions,’ JACM, Vol. 21, No. 1, pp. 65-75, January 1974.

[SIDN75] Sidaey, Jefirey B., 'Decomposition Algorithms for Single-Machine Sequencing with
Precedence Relations and Deferral Costs,’ Operations Research, Vol. 23, No. 2, pp.
283.298, March-April 1975.

[SIEW78a] Siewiorek, D.P., et al, 'A Case Study of Cmmmp, Cm’, C.vmp, Part I: Experience
with Fault-Tolerance in Microprocessors Systems,’ Proceedings of IEEE, Vol. 66,
No. 10, pp. 1178-1199, October 1978.

[SIEW78b] Siewiorek, D.P., et al, 'A Case Study of Cmmmp, Cm’, C.vmp, Part II: Predicting
and Calibrating Reliability of Multiprocessors Systems,’ Proceedings of [EEE, Vol.
66, No. 10, pp. 1200-1220, October 1978.

165




I

R '.'-
: s

[SIMO71| Simon, Richard, and Richard Lee, 'On the Optimal Solutions to AND/OR Series-
Parallel Graphs,’ JACM, Vol. 18, No. 3, pp. 354-372, July 1971.

[STON77| Stone, Harold S., "Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms,” [EEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp. 85-93,
January 1977.

[THANSI1] Thanawastien, S., and V.P. Nelson, 'Interference Analysis of Shuffle/Exchange Net-
works,' JEEE Transactions on Computers, Vol. C-30, No. 8, pp. 545-556, August
1981.

[UPFAS82| Upfal, Eli, 'Efficient Schemes for Parallel Commuaications,” Symposium on Principles
of Distridbuted Computing, pp. 55-59, August 1982.

[VANTS1] Van Tilborg, Andre, and Larry D. Wittie, 'Distributed Task Force Scheduling in
Multi-microcomputer Networks,'" National Computer Conference, pp. 283-289,
1981.

|WEBE78a] Weber, Richard R., 'On Optimal Assigment of Customers to Parallel Servers,’ J.
Appl. Prob., Vol. 15, pp. 406-413, 1978

|WEBE78b] Weber, Richard R., and Peter Nash, 'An Optimal Strategy in Multi-server Stochas-
tic Scheduling,’ J. R. Statist. Soc. Ser. B, Vol. 40, No. 3, pp. 322-327, 1978. -

|WEI82] Wei, Martin, and Howard A. Scholl, 'An Expression Model for Extraction and Evalua-
tion of Parallelism in Control Structures,’ [EEE Transaciions on Computers, Vol.
C-31, No. 9, pp. 851-863, September 1982.

[WITT80] Wittle, P., 'Multi-armed Bandits and the Gittins Index,’ J. R. Statist. Soc. Ser. B,
Vol. 42, No. 2, pp. 143-149, 1980.

|WINS7?] Wiaston, Wayne, 'Optimality of the Shortest Line Discipline,’ J. Appl. Prob., Vol. 14,
pp. 181-189, 1977.

|WULF80] Wulf, W.A., R. Levin, and S.P. Harbison, Hydra: An Ezperimental Operating System,
McGraw-Hill, New York, 1980.

166

P A
. :

k.’.

Y

v

e
Vo Y
PR R S ..






